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I. INTRODUCTION 

1. Introduction 

Cryptography is a fascinating subject, even more so today 

than in the past. The new and once unthinkable ideas of public 

key distribution and digital signatures have opened up new 

fields of research, and new possibilities for the marketplace. 

To be one of the first to venture into this virgin territory 

has been a great privilege. 

This thesis presents the findings of work done between 

fall of 1974 and spring of 1979. 

Chapters III and IV describing the "puzzle" methods are 

now primarily of pedagogical and historical interest: they 

were the first. break in what at that time appeared to be a 

smooth and solid wall. 

Chapter VI, on the trapdoor knapsack, describes the second 

real breakthrough, (the first was the key distribution method 

based on exponentiation developed by Hellman) and represents 

work done in the summer of 1976. 

Chapter V, on a certified digital signature, was conceived 

in the summer of 1977. To some extent it represents frustra

tion over the difficulties of extracting signatures in a clean 

and reliable way from the trapdoor knapsack. 

Chapter VII is a follow up on chapter VI. It attempts to 

provide reasons for believing that the trapdoor knapsack is ac

tually secure. The author is, of course, quite convinced it is 
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INTRODUCTION 

secure; but inventors have traditionally been blind to the 

weaknesses and obvious faults of their cryptographic inven

tions. It has therefore been very encouraging to hear from 

others that they have failed miserably in attempts to analyze 

it. 

Chapter IX on protocols provides insight into the problems 

and techniques of actually using pubJic key systems. 

Chapter VIII describes an essentially NP-complete conven

tional cryptosystem, a theoretical result which might provide a 

useful avenue for further research aimed at getting proofs of 

security. 

Chapter X describes a cryptanalytic method for breaking an 

apparent improvement which has been suggested to the DES. Its 

description of potential weakness in a particular scheme for 

multiple encipherment carries with it a simple moral: simple 

extensions or modifications to a cryptographic algorithm can 

have unexpected weaknesses. 
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INTRODUCTION 

2. Conventional Cryptography 

Conventional cryptographic systems provide secrecy and au-

thentication to information which may be overheard or mod ified 

by unauthorized third parties. This is done by encrypting (or 

enciphering) the plaintext P with a k~y K to produce the 

ciphertext C: SK(P) = C, where SK denotes the encjphering func-

tion under key K. Only authorized users know K, and so only 

-1 they can decipher C by computing P = SK (C). Although unau-

thorized users know C and the set of functions {SK}' this does 

not allow them either to determine P or to mod ify C to produce 

a C' which deciphers to a meaningful message. 

The security of such systems resides entirely in the key 

K. All other components of the system are assumed to be public 

knowledge. To maintain security, the legitimate users of the 

system must learn K, while preventing others from learning it. 

To date, this has been done by send ing K to the legitimate 

users of the system over special physicC'lly secure communica-

tion channels, e.g., registered mail or couriers. The flow of 

information in a conventional cryptographic system is shown in 

figure 1. 
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INTRODUCTION 

3. Public Key Systems 

The reader interested in public key cryptography is re

ferred to [4] for an excellent tutorial overview. So that this 

thesis is self contained, two sections from that paper are 

reproduced below with only minor changes to introduce the con

cepts of public key systems and digital signatures. 

The difficulty of distributing keys has been one of the 

major limitations on the use of conventional cryptographic 

technology. In order for the sender and receiver to make use 

of a physically secure channel such as registered mail for key 

distribution, they must be prepared to wait while the keys are 

sent, or have made prior preparation for cryptographic communi

cation. 

In the military, the chain of command helps to limit the 

number of user-pair connections, but even there, the key dis

tribution problem has been a major impediment to the use of 

cryptography. This problem will be accentuated in large com

mercial communication networks where the number of possible 

connections is (n2_n)/2 where n is the number of users. A sys

tem with one million users has almost 500 bill ion possible con

nections, and the cost of distributing this many keys is prohi

bitive. 

At this point we introduce a new kind of cryptographic 

system which simplifies the problem of key distribution. It is 
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INTRODUCTION 

possible to dispense with the secure key distribution channel 

of figure 1, and communicate over the insecure channel without 

any prearrangement. As indicated in figure 2, two way communi

cation is allowed between the transmitter and receiver, but the 

eavesdropper is passive and only listens. Systems of this type 

are called public key systems, in contrast to conventional sys

tems. 

The reason that keys must be so carefully protected in 

conventional cryptographic systems is that the enciphering and 

deciphering functions are inseparabl e. Anyone who has access 

to the key in order to encipher messages can also decipher mes-

sages. If the enciphering and deciphering capabilities are 

separated, privacy can be achieved without keeping the enci

phering key secret, because it can no longer be used for deci

phering. 

The new systems must be designed so that. it is easy to 

generate a random pair of inverse keys E, for enciphering, and 

D, for deciphering, and easy to operate with E and D, but com

putationally infeasible to compute D from E. 

A public key cryptosystem is a pair of families {EK} and 

{OK} for K in {K}, of algorithms representing an invE'rtibJ e 

transformation and its inverse defined such that: 

1) For every K in {K}, DK is the inverse of EK• That is, 

DK(EK(~)) = M, for any K and any ~. 

2) For every K in {K} and M in {M}, the values EK(M) and 
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INTRODUCTION 

DK(M) are easy to compute. 

3) For nearly all K in {K}, any easily computed algorithm 

equivalent to DK is computationally infeasible to 

derive from EK• 

4) For every K in {K}, it is feasible to generate the in

verse pair EK and DK from K. 

The third property allows a user's enciphering key EK to 

be made public without compromising the security of his secret 

deciphering key DK• The cryptographic system is ther~fore 

split into two parts, a family of enciphering transformations, 

and a family of deciphering transformations in such a way that 

given a member of one family it is infeasible to find the 

corresponding member of the other. 

The fourth property guarantees that there is a feasible 

way of computing corresponding pairs of inverse transformations 

when no constraint is placed on what either the enciphering or 

deciphering transformation is to be. In practice, the crypto

equipment must contain a true random numb~r generator (e.g., a 

noisy diode) for generating K, together with an algorithm for 

generating the EK-Dk pair from K. 

A system of this kind greatly simplifies -the problem of 

key distribution. Each user generates a pair of inverse 

transformations, E and D. He keeps the deciphering transforma

tion D secret, and makes the enciphering transformation E pub

lic by, for example, placing it in a public directory similar 
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INTRODUCTION 

to a phone book. Anyone can now encrypt messages and send them 

to the user, but no one else can decipher messages intended for 

him. 

If in addition to conditions 1) - 4) above, the set of 

transformations satisfy 

1') For every K in {K}, EK is the inverse of DK• That is 

for any K and any M, EKDK(~) = M. 

It is possible, and often desirable, to encipher with D 

and decipher with E. For this reason, EK is sometimes called 

the public key, and DK the secret (or signing) key. 

6/4/79 Chapter I Page 7 



INTRODUCTION 

4. Digital Signatures 

A second difficulty which has limited the appl ication of 

conventional cryptography is its inability to deal with the 

problem of dispute. Conventional authentication systems can 

prevent third party forgeries, but cannot settle disputes 

between the sender and receiver as to what message, if any, was 

sent. 

In current commercial practice, the validity of contracts 

and agreements is guaranteed by handwri tt.en signatures. A 

signed contract serves as proof of an agreement which the hold

er can present in court if necessary, but the use of signatures 

requires the transmission and storage of written documents: a 

major barrier to more widespread use of electronic communica

tions in business. 

The essence of a signature is that although only one per

son can produce it, anybody can recognize it. If there is to 

be a purely digital replacement for this paper instrument, each 

user must be able to produce messages whose authenticity can be 

checked by anyone, but which could not have been produced by 

anyone else, especially the intended recipient. In a conven

tional system the receiver authenticates any message he re

ceives from the sender by deciphering it in a key which the two 

hold in common. Because this key is held in common, however, 

the receiver has the ab il ity to produce any cryptogram that 
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could have been produced by the sender and so cannot prove that 

the sender actually sent a disputed message. 

Publ ic key cryptosystems provide a direct solution to the 

signature problem, if they satisfy condition 1'). Systems 

which almost satisfy 1') are also usable (see chapter VI). 

If user A wishes to send a signed message M to user B, he 

operates on it with his private key DA to produce the signed 

message S = DA(M). DA was used as A's deciphering key when 

privacy was desired, but is now used as his "enciphering" or 

"signing" key. When user B receives S he can recover ~ by 

operating on S with A's public key EA' 

B saves S as proof that user A sent him the particular 

message M. If A later disclaims having sent this message, E 

can take S to a judge who obtains EA and checks that EA(S) = M 

is a meaningful message with A's name at the end, the proper 

date and time, etc. Only user A could have generated S because 

only he knows DA, so A will be held responsible for having sent 

M. 

This technique provides unforgeable, message dependent, 

digital signatures, but allows any eavesdropper to determine M 

because only the public information EJI is needed to recover M 

from S. To obtain privacy of communication as well, A can en

crypt S with B's public key and send EB(S) instead of S. Only 

B knows DB' so only he can recover S and thence M. B still 

saves S as proof that user A sent him M. 

Other methods of generating digital signatures which do 
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not depend on publ ic key crypt.osysterns have been suggested [6]. 

[19] and Chapter V. 

[Note : This concludes the two sections taken largely fr·om 

[4].] 
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II. ONE WAY HASH FUNCTIONS 

There are many instances in which a large data field (e.g. 

10, 000 bits) needs to be authenticated, but only a small data 

field (e.g. 100 bits) can be stored or authenticated. (See, 

for example, chapter V). It is often required that it be in

feasible to compute other large data fields with the same image 

under the hash function, giving rise to the need for a ~ way 

hash function. 

Intuitively, a one way hash function F is one which is 

easy to compute but difficult to invert and can m?p arbitrarily 

large data fields onto much smaller ones. If y = F( x), then 

given x and F, it is easy to compute y, but given y and F it is 

effectively impossible to compute x. More precisely: 

1) F can be applied to any argument of any size. F ap

plied to more than one argument (e.g. F( x1 ,x2 ) ) is 

equi val ent to F appl ied to the concatenation of the 

arguments, i.e. F«x1 ,x2». 

2) F always produces a fixed size output, which, for the 

sake of concreteness, we take to be 100 bits. 

3) Given F and x it is easy to compute F(x). 

4) Given F and F(x), it is computationally infeasible to· 

determine x. 

5) Given F and x, it is computationally infeasible to 

find an x' i x such that F(x) = F(x'). 

The major use of one way functions is for authentication. 
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If a value y can be authenticat.ed, we can authenticate x by 

computing 

F( x) = y 

and authenticating y. 

No other input x' can be found (al though they probably ex 1st) 

which will generate y. A 100 bit Y can authenticate an arbi

trarily large x. This property is crucial for the convenient 

authentication of large amounts of information. Although a 100 

bit y is plausible, selection of the size in a real system in

volves tradeoffs between the reduced cost and improved effi-

ciency of a smaller size, and the improved security of a larger 

size. 

Because y is used to aut.henticate the corresponding x, it 

would be intolerable if someone could comput.e an x' such that y 

= F(x) = F(x'). The fraudulent x' could be substituted for the 

legitimate x and would be authenticated by the same informa

tion. If y is 100 bits long, an interloper must try about 2100 

different values of x' before getting a value such that F(x') = 

y. In an actual system, F will be applied to many different 

values of x, producing many different values of y. As a conse- . 

quence, trying fewer than 2100 different values of x will prob

ably yield an x' such that F(x') = y for some already authenti-

cated y. To take a concrete example, assume F has been applied 

to 240 different values of x, and produced 240 corresponding 

values of y, each of which has been authenticated. If the y's 

are 100 bits, then a random search over 260 values of x would 
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ONE WAY HASH FUNCTIONS 

probably yield an x' such that y = F(x) = F(x') for some value 

of y. While this search is still difficult, it is easier than 

searching over 2100 different values of x. This demonstrates 

that y might have to be longer than expected in a heavily used 

system. 100 Forcing an opponent to search over all 2 different 

values of x would be more desirable. This can usually be done 

by using many different functions, F" F2 , The effect of 

using many different one way functions is to prevent analysis 

of F by exhaustive techniques, because each value of x is au-

thenticated witl'1 a distinct Fi • This will significantly in-

crease security, yet requires only minor changes in implementa-

tion. 

Functions such as F can be defined in terms of convention-

al cryptographic functions [6 J. Assume we have a conventional 

encryption function C(key,plaintext) which has a 200 bit key 

size and encrypts 100 bit blocks of plaintext into 100 bit 

blocks of ciphertext. (It is a common misconception that the 

key can be no larger than the plaintext blocksize, but as an 

example the DES can be regarded as having a 768 bit key and a 

64 bit block size). 

We first define F 0' which is simpler than F and wMch sa

tisfies properties 2, 3, 4, and 5; but whose input x is res-

tricted to be 200 bits. We define 

FO(X) = y = C(x,Q) 

FO accepts a 200 bit input x and produces a 100 bit output y, 

as desired. Furthermore, given y, the problem of finding an x' 
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ONE WAY HASH FUNCTIONS 

such that F(x') = y is equivalent to finding a key x' such that 

y = C( x' ,Q). If C is a good encryption function, this is com-

putationally infeasible. 

If the input x to F is fewer than 200 bits, then we CAn 

"pad" x by adding 0' s until it is exactly 200 bits, and then 

define F = F o. If the input is more than 200 bits, we will 

break it into '00 bit pieces. Assume that 

and that each x. is '00 bits long. Then F is defined in terms 
1 

of repeated applications of FO. Fe is first applied to x, and 

x2 to obtain y, Then = 

FO(Y2'X4 ), Y4 = Fo(Y3'x5 ), ••• Yi = Fo(Yi_"X i +')' ••• Yk-' = 

FO(Yk_2'xk). F(x) is defined to be Yk-,; the final Y in the 

series. If x is not an exact multiple of '00 bits, then it is 

padded with O's, as above. 

It is obvious that F can accept arbitrarily large values 

for x. Although complexity theory has not progressed to the 

point where it is possibJ e to prove that it will be computa-

tionally infeasible to find any vector ~' not equal to x such 

that F(~) = F(~'), a p]ausibility argument cen be made induc-

tively thc:ot this is the case. As a basis, when k = 2, the pro-

= 

perty holds because F(~) = F 0 (X, ,x2 ), and the property holds 

for FO by assumption. We establish the case for k = 3 by con

tradiction. We assume that FCx"x2 ,x3 ) = F(x,',x2 ',x3 ') and 

that Xi i Xi' for some i in {',2,3l. We first note that 

F(X"x2 ,x3 ) = FO(Y1'X3 ) by definition. If either y, -t Y1' or 
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X3 i X3" and FO(y"x3 ) = FO(y,',x3 '), then we have violated 

assumption 5 made about FO. If y, = y,' and x3 = x3" then ei

ther x, i x,' or x2 i x2 '. By definition FO(x, ,x2 ) = y" and 

FO(x, ',x2 ') = y,', so FO(x"x2 ) = FO(x, ',x2 ') and again we con

tradict assumption 5 made about FO. This line of logic can be 

extended to the cases k = 3. 4, 5, 

This argument cannot be made fully rigorous until the pro

perties of F 0 are made rigorous. This must await further ad

vances in complexity theory. 
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III. A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES 

This chapter describes the first public key distribution 

system and the first publ ic key cryptosystem, which were both 

based on the concept of a "puzzle". 

Puzzles can be used in a variety of ways to make public 

key distribution systems where the effort involved to break the 

system grows as the square of the effort to use the system. 

The method described in chapter IV is not the simplest, but was 

selected because it requi.red the least memory and was deter

ministic. (As an interesting aside, Ron Rivest sent the author 

a letter mentioning this fact, and described a simpler system 

which was, in fact, the system the author originally devised.) 

As originally conceived, the method was more closely 

linked to the concept of a one way function and was probabilis

tic in nature. Basically, it centered on the observation that 

if two people randomly select n numbers from a space of n2 

numbers, there is a significant probability that both will have 

selected at least one number in common. This is closely relat

ed to the "birthdc-y problem" [41 J. Given n people in a room, 

what is the probability that at least two of them were born on 

the same day? The probability becomes surprisingly high when 

there are more than square root(365) = 20 people in the room. 

This surpri sing statistical result can be used for public 

key distribution rather easily. If A and B wish to agree on a 

2 common key, then each selects n numbers from a space of n 

numbers. The probability that they selected a common number is 

significant and if A and B can determine this common number it 
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can be used as a cryptographic key in further communications. 

Note that the number of possible keys is n2 , so anyone who 

2 tries to break this method must search through all n , rather 

than the O(n) keys that A and B know. 

A and B determine the common number as follows: A applies 

a one way function F to hide each of his n randomly chosen 

numbers, and sends them to B. B applies F to hide his randomly 

chosen numbers and sends the result to A. A and B can now sort 

both lists of hidden numbers, and look for a match. If A and B 

chanced upon the same number, then the hidden version of this 

number computed by A and P will be the same. All that E knows 

is the hidden versions of the numbers. E can easily look 

through A's and B's hidden numbers and find the match, but then 

E must search through all n2 possible values to find the origi-

nal value, which is used as the key. A and B, on the other 

hand, already KNOW the original values, because they generated 

the hidden values by applying F to numbers they knew. 

The next phase in the evolutionary development of the 

method was to create a deterministic version of the original 

method. This is done fa irly easily. Instead of selecting n· 

numbers from n2 possibilities completely at random, select one 

number randomly in the range from 1 to n, the second number 

randomly in the range from n+1 to 2 • n, the third number ran-

domly in the range from 2 • n + 1 to 3 • n, the ith number from 

the range (i-1) • n + 1 to i • n, and the nth number from the 

range (n-1) • n + 1 to n • n. This guarantees that there must 
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A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES 

be one number in each of the n possible ranges. By picking a 

random range, and then searching sequentially through all pos

sible numbers in that range, a "collision" must occur. In oth

er words, f>. picks a single number randomly from each range, 

hides them, randomly permutes their order and transmits the 

permuted hidden values to P. B picks a random range, hides all 

n numbers in that range, but does not send the result to A. 

Instead, E looks for a match between the hidden numbers A sent, 

and the hidden numbers E just generated. When E finds the 

match, E sends the hidden value back to A, who compares t.his 

single hidden number against the n hidden numbers A generated. 

The method now deterministically achieves an n2:n ratio of ef

fort (work factor). However, it still requires a great deal of 

memory. 

The method described in chapter IV was the next p.volution

ary step beyond this. 

The "puzzles" method also evolved into the first public 

key cryptosystem. Easically, the enciphering and deciphering 

keys are just explicit tabular representations of randomly 

chosen enciphering and deciphering functions. The only modifi

cation is to the enciphering key. It cannot be represented in 

a simple tabular format, because this would allow it to be in

verted too easily, i.e., the public enciphering key must be 

hard to invert, and a tabular format is not hard to invert, so 

the tabular format must be extended somewhat. This is done by 
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A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES 

enpuzzling the elements of the range. 

First, we define the enpuzzlement of an argument by the 

function: 

P(x,n) 

where x is the value to be enpuzzled, and n represents the 

difficul ty of breaking the resulting puzzle. P<345, 45) means 

that the number "345" can be recovered by putting in 45 units 

of effort (on average). 

A small enciphering key; which maps plaintext into 

ciphertext 7, plaintext 2 into ciphertext 3, and plaintext 

8 into ciphertext 5; is shown in figure 1, with n = B. 

The Enciphering Key 

P(7,B) 

2 P(3,8) 

3 P(6,S) 

4 P(B,8) 

5 P(1,8) 

6 P(4,8) 

7 P(2,8) 

8 P(5,8) 

Figure 1 

Note that it requires O(n) units of effort to compute 
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E(plaintext) from this tabular representation, but that comput-

2 
ing D(ciphertext) requires O(n ). 

The corresponding secret deciphering key is shown in fig-

ure 2. 

The Deciphering Key 

1 5 

2 7 

3 2 

4 6 

5 8 

6 3 

7 1 

8 4 

Figure 2 

The secret deciphering key is not enpuzzled, and so it is 

easy to compute D(ciphertext) from it, (or to compute 

E(plaintext), but this is largely beside the point). Making 

the enCiphering and deciphering keys can be done in O(n) time, 

enciphering requires O(n) time, deciphering can be done in unit 

time, but breaking the system requires O(n2 ) time. 
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IV. PUBLIC KEY DISTRIBUTION USING PUZZLE~ 

1. INTRODUCTION 

This chapter describes the first public key system ever 

developed. Until this system. it had been assumed that a 

necessary precondition for cryptographically secure communica

tions was the transmission of a key. by secret means. prior to 

an attempt to communicate securely. The system described below. 

however, allows two communicants to select a key publicly. but 

in such a fashion that no one else can easily determine what it 

is. 

The body of the chapter will begin with a description of a 

conventional cryptographic system. in whicp secure transmission 

of the key is required. It will then develop the new concept 

of a public key system. The implications of public key systems 

will then be explored in more detail. with the aid of some ex

amples. 
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PUBLIC KEY DISTRIBUTION USING PUZZLES 

2. REVIEr! 

We introduce three protagonists into our paradigm: A and 

B, the two communicants, and E, the enemy, who wishes to find 

out what A and E are communicating. A and R have available a 

conventional cryptographic system for encrypting and decryptjng 

messages that they send to each other. A, E, and E all know 

the general method of encryption. A and B also have available 

a normal communications channel, over which they send the bulk 

of their messages. To allow A Clnd P to communicate securely, 

they must load a key, which is unknown to E, into their crypto

graphic devices. The general method uses this key as a parame

ter, and will perform a particular transformation on messages 

for a particular key. Because E does not know this key, he 

cannot perform the particular transformation, and thus cannot 

encrypt or decrypt messages. 

A and B must both know what the key is, and must insure 

that E does not know what it is. In the trad itional parad igm 

for cryptography, this situation comes about by the transmis

sion of the key from A to E over some special and secure com

munications channel which we shall refer to as the key channel. 

E cannot intercept messages sent on this channel, and the key 

is therefore safe. 

The key channel is not used for normal communications be

cause of its expense and inconvenience. 

In view of the central position that the key channel will 
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occupy in this chapter, it would be wise to state, somewhat 

more clearly, the conditions which it must satisfy. There are 

two such conditions. 

1) E cannot modify or alter messages on the key channel, 

nor can he inject false or spurious messages. 

2) E is unable to determine the content of any message 

sent over the key channel, i.e., E cannot intercept 

the messages. 

Systems of this type are referred to as conventional cryp

tographic systems, and their study dates back to antiquity (See 

Shannon [35J for a good overview). We now make a modification 

which had not previously been considered. 
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3. THE NEW APPROACH 

We modify the t.raditional paradigm by dropping the second 

restriction on the key channel, but not the first. We no 

longer demand that E be unable to learn what is sent on the key 

channel, rather, we assume that E has perf~ct knowledge of 

everything that is sent over this channel [footnote page 31]. 

Al though in some in stances the key and normal channel s may be 

one and the same, we shall treat them as logically distinct. 

It is the thesis of this chapter that secure communica-

tions between A and B can take place under t.he conditions we 

have just described. 

The reader should clearly understand that no key lurks in 

the background. There is no method by which A and B can com-

municate other than the normal channel and the key channel. 

They have made no secret preparations prior to the time that 

they wish to communicate securely. 

We must carefully consider what constitutes a solution. 

If A and B eventually agree upon a key, and if the work re-

quired of E to determine the key is much higher than the work· 

put in by either A or E to select the key, then we have a solu-

tion. Note that E can determine the key used in most conven-

tional cryptographic systems (with the exception of the one 

time pad) simply by trying all possible keys and seeing which 

one produces a legible message. However, the amount of work 

required grows exponentially compared to the amount of work put 
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in by A or P. The public key solution described is not ex

ponential, but the amount of work required of E to determine 

the key increases as the square of the amount of work put in by 

A and P to select the key. Methods which appear to force E to 

put in an amount of work which grows exponentially with the 

amount of work A and B put in have been discovered since the 

conception of this method. While this method is therefore not 

as practical, its simplicity makes it the most nearly provably 

secure system and the best for pedagogical purposes. It relies 

on little more than the existence of one way functions. 
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4. THE ~THOD 

The method is based on the concept of a puzzle, that is, a 

cryptogram which is meant to be broken. To solve the puzzle, 

we must cryptanalyze the cryptogram. Having done this, we 

learn the information that was "enpuzzled", the plaintext of 

the cryptogram. Just as we can encrypt plaintext to produce a' 

cryptogram, so we can enpuzzle information to produce a puzzle. 

A puzzle, though, is meant to be solved, while ideally, a cryp-

togram cannot be cryptanalyzed. To solve a puzzle, all you 

need do is put in the required amount of effort. 

To sharpen our definition. we will consider the following 

method of creating puzzles. First, select a strong encryption 

function. We are not interested in the details of how this en

cryption function works: our only interest is that it does 

work. The reader can self'ct any encryption function that he 

feels is particularly strong and effective. A concrete example 

might be the DES encryption function [24J, which with a longer 

key is currently felt to be quite strong. 

After selecting an encryption function, we create our puz

zle by encrypting some piece of information with that function 

wi th a key chosen at random from a specified subset of the 

keyspace. We artificially restrict the size of the key space 

used with the encryption function to make the puzzle solvable. 

If the key is normally 128 bits, we might use only 30 bits and 

set the remaining 98 bits to O. \-,Thile searching through 2128 
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possible keys is completely infeasible, searching through 230 

is tedious, but quite possible. We can control the difficulty 

of solving a puzzle, simply by changing the restriction on the 

size of the key space used. To make the puzzle harder to 

solve, we might select a 40 bit key, while to make it easier, 

we might select a 20 bit key. vre assume the strength of the 

underlying encryption function is adequate to insure that our 

puzzle can only be solved by exhaustive search through the res

tricted key space, and we can then adjust the size of the key 

space to precisely control the difftcul ty of solving the puz

zle. 

There is still one more point that must be brought out. 

In cryptanalyzing an encrypted message, the cryptanalyst relies 

on redundancy in the message to indicate when the proper key is 

tried. If the information we enpuzzle is random, there will be 

no redundancy, and thus no way of solving the puzzle. We must 

deliberately introduce redundancy into our puzzle, so that it 

can be solved. This can be done easily enough by encrypting, 

along with the information, a constant that is publicly stated. 

When we try to decrypt the puzzl e with a particular key, the 

recovery of this constant can be taken as evidence that we have 

selected the right key, and thus have solved the puzzle. The 

absence of the constant part in the decrypted puzzle guarantees 

that we have used the wrong key, and should tr y ag ai n. Wh il e 

an incorrect key can produce a false alarm, if the constant 

field is larger than the number of bits in the restricted key 
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space, then unicity distance arguments indicate that false 

alarms should be rare. 

With the concept of puzzle in hand, we can proceed. We let 

A and B agree upon the value of N which they wish to use. A 

then generates N puzzles, and transmits these N puzzles to P 

over the key channel. A chooses the size of the key space so 

that these puzzles require O(N) effort to break. (That is, A 

selects a key space of size K·N, for a constant, K.) Each puz

zle contains, within itself, two pieces of information. Nei

ther piece of information is readily available to anyone exa

mining the puzzle. By devoting O(N) effort to solving the puz

zle, it is possible to determine both these pieces of informa

tion. One piece of information is a puzzle id, which uniquely 

identifies each of the N puzzles. The ids were assigned by A 

at random. The other piece of information in the puzzle is a 

random bit string which is the proper size for use as a true 

(unrestricted) key, Le., one of the possible keys to be used 

in subsequent encrypted communications. To distinguish the true 

keys, one for each puzzle, from the keys randomly selected from 

the restricted key space to create the puzzles, we will call 

the former "true keys", and the latter, "restricted keys". 

Thus, N true keys are enpuzzled, and in the process of enpuz

zling each true key, a restricted key is used. 

When B is presented with this menu of N puzzles, he 

selects a puzzle at random and spends O(n) effort to solve the 

puzzle. B then transmits the id back to A over the key chan-
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nel, and uses the true key found in the puzzle as the key for 

further encrypted communications over the normal channel. 

A, P, and E all know the N puzzles. They also know the 

id, because B transmitted the id over t.he key channel. E knows 

the corresponding true key, because E selected the puzzle to be 

solved. A knows the correspond ing true key, because A knows 

which true key is associated with the id that P sent.. E knows 

only the id, but does not know the true key. E does not know 

which puzzle contains the true key that E selected, and which A 

and P are using, even though he knows the id. To determine 

which puzzle is the correct one, he must break puzzles at ran

dom until he encounters the one with the correct ide 

If E is to determine the key which A and E are using, 

then, on an average, E will have to solve 1/2 N puzzles before 

reaching the puzzle that E solved. Each puzzle has been con

structed so that it requires O(N) effort to break, so E must 

spend, on an average, O(N2 ) effort to determine the key. B, on 

the other hand, need only spend O(N) effort t.o break the one 

puzzle he selected, while A need only spend O(N) effort to 

manufactur e the N puzzl es. Thus, both A and E will only put 

in O{N) effort. A detailed description appears in [21]. 

In summary: the method allows the use of channels satisfy

ing assumption 1, and not satisfying assumption 2, for the 

transmission of key information. We need only guarantee that 

messages are unmod ified, and we no longer require that they be 

unread. If the two communicants, A and E, put in O(N) effort, 
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then the enemy, E, must. put in O(N2) effort to determine the 

key. 

Generating the n puzzles is orders of magnitude less cost-

ly than transmitting them. Creating a method in which the ra-

tio of efforts was still 2. n .n, but which did not require 

transmitting O(n) bits would be a substantial and practical im-

provement. There seems no reason in principal why such an im-

provement should not be possible. 
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5. FOOTNOTE 

Wyner [39J introduced a different (information theoretic) 

approach to secure communication over an insecure channel 

wi thout prearrangement. Wynf>r assumes that the wiretapper E 

has inferior reception of the messages being transmitted. By 

taking advantage of this inferior reception, Wyner shows how 

the wiretapper can be completely confused. Our approach is dif

ferent and assumes that both the legitimate receiver and the 

wiretapper perfectly receive whatever the transmitter sends. 
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1. Introduction 

Digital signatures prorr.ise to revolutionize business by 

phone or other telecommunication devices [6J but use of the 

currently known pubHc key cryptosystems [18], [20J, [21], [31] 

is risky until they have been carefully certified. A signature 

system whose security rested solely on the security of a con

ventional cryptographic function would be "prE"-certified" to 

the extent that the underlying encryption function had been 

certified. The delays and cost of a new certification effort 

would be avoided. Lamport and Diffie [6J suggested such a sys

tern, but it has severe performance drawbacks. Lipton and Ma

tyas [17J nonetheless suggested its use as the only near term 

solution to a pressing problem. 

This chapter describes a digital signature system which is 

"pre-certified" in the above sense, generates signatures of 

about 15 kilobits (2 kilobytes), requires a few thousand appli

cations of the underlying encryption function per signature, 

and only a few kilobytes of memory. If the underlying encryp

tion function takes 10 microseconds to encrypt a block, gen

erating a signature takes approximately 20 milliseconds. 
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The following major points are covered: 

1.) A description of the Lamport-Diffie one time signa

ture. 

2.) An improved version of the Lamport-Diffie one time 

signature. 

3. ) A method of converting anyone time signature into a 

convenient signature system. 

6/4/79 Chapter V Page 33 



A CERTIFIED DIGITAL SIGNATURE 

2. The Lamport-Diffie One Time Signature 

The Lamport-Diffie one time signature [6J is based on the 

concept of a one way function [7] ,[38], If y = F(x) is the 

result of applying the one way function F to input x, then the 

key observation is: 

The person who computed y = F(x) is the only person who 

knows x. If y is publicly revealed, only the origi.

nator of y knows x, and can choose to reveal or con

ceal x at his whim. 

This is best clarified by an example. ~uppose a person A 

has some stock, which he can sell at any time. A might wish to 

sell the stock on short notice, which means that A would like 

to tell his broker over the phone. The broker, E, does not 

wish to sell with only a phone call as authorization. To solve 

this problem, A computes y = F(x) and gives y to E. They agree 

that when A wants to sell his stock he will reveal x to B. 

(This agreement could be formal ized as a wrHten contract [17] 

which includes the value of y and a description of F but not 

the value of x.) E will then be able to prove that A wanted to 

sell his stock, because B will be able to exhibit x, and demon

strate that F(x) = y. 

If A later denies having ordered E to sell the stock, B 
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can show the contract and x to a judge as proof that A, con-

trary to his statement, did order the stock sold. Both F and y 

are given in the original (written) contract, so the judge can 

compute F(x) and verify that it equals y. The only person who 

knew x was A, and the only way E could have learned x would be 

if A had revealed x. Therefore, A must have revealed x; an ac-

tion which by prior agreement meant that A wanted to sell his 

stock. 

This example illustrates a signature system which "signs" 

a single bit of information. Either A sold the stock, or he 

did not. If A wanted to tell his broker to sell 10 shares of 

stock, then A must be able to sign a several bit message. In 

the general Lamport-Diffie scheme, if A wanted to sign a mes-

sage m whose size was s bits, then he would precompute F(x 1 ) = 

Y1' F(x2 ) = Y2' F(x3 ) = Y3'··· F(xs ) = Ys· A and B would agree 

on the vector Y = Y1' Y2 ••• Ys. If the jth bit of m was a 1, 

A would reveal x.. If the jth bit of m was a 0, A would not 
J 

reveal In essence, each bit of m would be individually 

signed. Arbitrary messages can be signed, one bit at a time. 

Tn practice, long messages (greater than 100 bits) can be 

mapped into short messages (100 bits) by a one way function and 

only the short message signed. We can therefore assume, 

without loss of generality, that all messages are a fixed 

length, e.g., 100 bits. 

The method as described thus far suffers from the defect 

that B can alter m by changing bits that are 1's into a's. B 
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simply denies he ever received x., (in spite of the fact he 
J 

did). However, O's cannot be changed to , 'so Lamport and Dif-

fie overcame this problem by signing a new message m', which is 

exactly twice as long as m and is computed by concatenating m 

with the bitwise complement of m. That is, each bit mj in the 

original message is represented by two bits, m. and the comple
J 

ment of mj in the new message m'. Clearly, one or the other 

bit must be a O. To alter the message, B would have to turn a 

o into a " something he cannot do. 

It should now be clear why this method is a "one time" 

signature: Each Y = y" Y 2' ••• Y 2 s can only be used to sign 

one message. If more than one message is to be signed, then 

new values Y" Y2, Y3, ••• are needed, a new Yi for each mes-

sage. 

One time signatures are practical between a single pair of 

users who are willing to exchange the large amount of data 

necessary but they are not practical for most applications 

without further refinements. If each y. is '00 bits long and a 
1 

100 bit one way hash function of each message is signed, each 

Yi must be 20,000 bits. If 1000 messages are to be signed be

fore new public authentication data is needed, over 20,000,000 

bi ts or 2.5 megabytes must be stored as public informat.ion. 

Even if this is not overly burdensome when only two users, A 

and B, are involved in the signature system, if B had to keep 

2.5 megabytes of data for 1000 other users, B would have to 

store 2.5 gigabytes of data. While possible, this hardly seems 
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economical. With further increases in the number of users, or 

in the number of messages each user wants to be able to sign, 

the system becomes completely unwieldy. 

How to eliminate the huge storage requirements is a major 

subject of this chapter. 
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3. An Improved One Time Signature 

This section explains how to reduce the size of signed 

messages in the Lamport-Diffie method by almost a factor of 2. 

As previously mentioned. the Lamport-Diffie method solves 

the problem that 1 's in the original message can be altered to 

O's by doubling the length of the message, and signing each bit 

and its complement independently. In this way, changing a 1 to 

a 0 in the new message, m', would result in an incorrectly for-

matted message, which would be rejected. 

represents a solution to the problem: 

In essence, this 

Create a coding scheme in which accidental or inten

tional conversion of 1's to O's will produce an ille

gal codeword. 

An al ternati ve coding method which accompl ishes the same 

result is to append a count of the number of 0 bits in m before 

signing. The new message, m', would be only log2 s bits longer 

than the original s bit message, m. If any 1's in m' were 

changed to O's (O's cannot be changed to 1 's), it would falsify 

the count of O's. 

Notice that while it is possible to reduce the count by 

changing 1 's to O's in the count field, and while it is possi

ble to increase the number of O's by changing 1 's to O's in the 
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message, these two "errors" cannot be made to compensate for 

each other. e 

A small example is in order. Assume that our messages are 

8 bits long, and that our count is 10g2 8 = 3 bits long. If 

our message m is 

m = 11010110 

Then m' would be 

m' = 11010110,011 

(Where a comma is used to clarify the division of m' into m and 

its 0 count.) 

If the codeword 11010110,011 were changed to 01010110,011 

by changing the first 1 to a 0, then the count 011 would have 

to be changed to 100 because we now have 40's, not 3. Put 

this requires changing a 0 to a 1, something we cannot do. If 

the codeword were changed to 11010110,010 by altering the 0 

count then the message would have to be changed so that it had 

only 20's instead of 3. Again, this ch8nge is illegal because 

it requires changing O's to 1 'so 

This improved method is easy to implement and cuts the 

size of the signed message almost in half, although this is 

still too large for most applications; e.g., it reduces 2.5 

gigabytes to 1.25 gigabytes. 
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4. Tree Authentication 

A new protocol would eliminate the large storage require-

ments and the need for prior arrangements. If A transmitted Y. 
1 

to E just before signing a message, then B would not previously 

have had to get and keep copies of the Y. from A. Unfortunate-
1 

ly, such a protocol would not work because anyone could claim 

to be A, send a false Y., and tr ick B into thinking he had re
I 

ceived a properly authorized signature when he had received 

nothing of the kind. B must somehow be able to confirm that he 

was sent the correct Y. and not a forgery. 
1 

The problem is to authenticate A's Y .• The simplest (but 
1 

unsatisfactory) method is, as suggested above, to keep a copy 

of A's Yi • In this section, we describe a method called "tree 

authentication" which can be used to authenticate any Y. of any 
1 

user quickly and easily, but which requires minimal storage. 

Problem Definition: Given a vector of data items! = Y1,. 

Y2 , ••• Yn design an algorithm which can quickly authenticate a 

randomly chosen Y. but which has modest memory requirements, 
1 

i.e., does not. have a table of Y1, Y2, •.• Yn • 
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We authenticate the Y. by "divide and conquer". As illus-
1 

trated in figure 1, define the function HCi,j,!) by 

2.) HCi,j,Y> = 

FCY. ) 
1 

where k = Ci+j)/2 

for the <i ,j> pairs of figure 1 and its extensions to larger 

trees described below. 

HCi,j,Y) is a function of Y., Y. l' ... Y. and can be used 
- 1 1+ J 

to authenticate all of them. HC1,n,!) can be used to authenti-

cate Y 1 through Yn and is only 100 bits, so it can be con

veniently stored. We restrict n to powers of 2 to simplify the 

explanation. " 

This method lets us selectively authenticate any "leaf," 

Y i' that we wish. To see this, we use an example where n = 8. 

To authenticate Y5 , we proceed in the manner illustrated in 

figure 2: 

1.) HC1,8,!) is already known and authenticated. 

and HC5,8,!) and let the receiver compute HC1,a,!) = 

FC HC1,4,!), HC5,8,!) ) to confirm that they are 

correct. 

3.) The receiver has authenticated H(5, a,!). Send 

HC5,6,!) and HC7,8,!) and let the receiver compute 
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H (3,3 ,1) 0 H(4, 4, Y)O H( 5,5, Y )0 H(6,6, Y ) 0 H (7,7, Y) b H (8,8 , Y) 

Y3 Y4 Y5 

FIG 1 
AN AUTHENTICATION TREE WITH N = 8. 

Y6 Y7 y. 
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PAGE 41C 

'. 



A CERTIFIED DIGITAL SIGNATURE 

H(5,8,~) = F( H(5,6,!), H(7,8,!) ) to confirm that 

they are correct. 

4.) The receiver has authenticated H(5,6,!). Send 

H(5,5,!) and H(6,6,!) and let the receiver compute 

H(5,6,!) = F( H(5,5,!), H(6,6.!) to confirm that 

they are correct. 

5.) The receiver has authenticated H(5,5,!). Send Y5 and 

let the receiver compute H(5,5,!) = F( Y5 ) to con-

firm that it is correct. 

6.) The receiver has authenticated Y5 • 

Uslng this method, only log2 n transmissions are required, 

each of about 200 bits. Close examination of the algorithm 

will reveal that half the transmissions are redundant. For ex-

ample, H(5,6,!) can be computed from H(5,5,!) end H(6,6,!), so 

there is really no need to send H(5,E,!). Similarly, H(5,8,!) 

can be computed from H(5,6,!) and H(7,8,!), so H(5,e,!) need 

never be transmitted, either. (The recel.ver must compute these 

quantities anyway for proper authentication.) Therefore, to au-

thenticate Y5 required only that we have previously authenti

cated H(1,8,!), and that we transmit Y5 , H(6,6,!), H(7,8,!), 

and H(1,4,!). That is, we require 100 log2 n bits of informa-

tion to authenticate an arbitrary Y .. 
1 

The method is called tree authentication because the com-

putation of H(1,n,!) forms a binary tree of recursive calls. 
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Authenticating a particular leaf Y. in the tree requires only 
1 

those values of H() starting from the leaf and progressing to 

the root, i.e., from HCi,i,,!) to H(1,n,,!). H(1,n,,!) will be 

referred to as the root of the authentication tree, or R. The 

information near the path from R to HCi, i ,1) required to au-

thenticate Yi will be called the authentication path for Yi. 

A "proof" that the authentication path actually authenti-

cates the chosen leaf is similar to the "proof" that F defined 

in chapter II correctly authenticates its input. Again, more 

rigorous proofs must await advances in complexity theory. 

Although H() produces a 100 bit output, unless additional 

precautions (outlined in chapter II) are taken, only 260 or 270 

operations would suffice to break the system. To force the 

cryptanal ysis to use 2100 operations it is necessary to make 

each application of F unique, i.e., to use a family Of one way 

functions F1, F2 , ••• each one of which is used only once. 

The use of tree authentication is now fa irly clear. A 

transmits Y. to B. A then transmits the authentication path 
1 

for Y.. B knows R, the root of the authentication tree, by 
1 

prior arrangement. P can then authenticate Y., and can accept 
1 

the ith signed message from A as genuine. 

The prior arrangements include the computation of R by A. 

If A wishes to be able to sign 1,000,000 messages, this pre-

computation will require about an hour, assuming a single en-

cryption takes 10 microseconds. (Fairchild is now (1979) pro-

ducing a 4-chip set which costs about $100 and which encrypts 
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faster than this.) The time required for the pre-computation is 

linear in n, so if A desires to be able to sign 1,000,000,000 

messages, his pre-computation will be about 1000 hours. 

The major distinction between this method and digital sig-

natures generated using publ ic key cryptosystems is the re-

quirement that R be changed periodically because only n mes-

sages can be signed. With a publ ic key cryptosystem, it is 

possible to sign an almost indefinite number of messages, and 

for a user to retain DA for his I ifetime if he so desires. In 

practice, this restriction does not appear to be significant. 

If the jth user has a distinct authentication tree with 

root R j' then tree authentication can be used to authenticate 

R j just as easily as it can be used to authenticate Yi • It is 

not necessary for each user to remember all the R. in order to 
J 

authenticate them. A central clearinghouse could accept the Rj 

from all u users, and compute H(1 ,u,.!~). This single 100 bit 

quantity could then be distrihuted and would serve to authenti-

cate all the R., which would in turn be used to authenticate 
J 

the Yi • In practice, A would remember R A and the authentica-

tion path for RA and send them to P along with Yi and the au

thentication path for Yi • (A different method of authentica

tion would be for the clearinghouse to digitally sign "letters 

of reference" for new users of the system using a one time sig-

nature. Kohnfelder [14J has suggested this method for use with 

public key cryptosystems; see chapter 9.) 

Tree authentication and authentication using one time sig-
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natures can be intermixed to produce systems with all the flex

ibility of public key based systems. 
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5. The Path Regeneration Algorithm 

A must know the authentication path for Y. 
1 

before 

transmitting it to B. Unfortunately this requires the computa-

tion of H(i ,j ,:0 for many different values of i and j. In the 

example, it was necessary to compute H(6,6,!), H(7.8,!), and 

H(1,4,!) and send them to B along with Y5 • This is simple for 

the small tree used in our example, but computing 

H(4194304,8388608,!) just prior to sending it would be an in-

tolerable burden. One obvious solution would be to precompute 

H(1,n,!) and to save all the intermediate computations: i.e., 

precompute all authentication paths. This would certainly al-

low the quick regeneration of the authentication path for Yi , 

but would require a large memory. 

A more satisfactory solution is to note that we wish to 

authenticate Y1 , Y2 , Y3 , Y4 , ••• in that order. Most of the 

computations used in reconstructing the authentication path for 

Y. can be used in comput ing the authentication path for Y. 1. 
1 1+ 

Only the incremental computations need be performed, and these 

are quite modest. 

In add it ion. although the Y. must appear to be random, 
1 

they can actually be generated (safely) in a pseudo-random 

fashion from a small truly random seed. It is not necessary to 

keep the Y. in memory, but only the small truly random seed 
1 

used to generate them. 
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The result of these observations is an algorithm which can 

recompute each Y. and its authentication path quickly and with 
1 

modest memory requirements. Before describing it we review the 

problem: 

Problem Definition: Sequentially generate the authentica-

tion paths for Y1, Y2, Y3 , ... Yn with modest time and 

space bounds. 

The simplest way to understand how an algorithm can effi-

ciently generate all authentication paths is to generate all 

the authentication paths for a small example. 

An example of all authentication paths for n = 8 is: 

leaf 

6/4/79 

authentication path 

H(1,8,:0 H(5,8,I) H(3,4,!) H(2,2,!) 

H(1,8,!) H(5,8,!) H(3,4,!) HO,l,!) 

H(1,8,!) H(5,8,!) H(1,2,!) H(4,4,!) 

H(1,B,!) H(5,8,!) H(1,2,!) H(3,3,!) 

H(1,8,!) H(1,4,!) H(7,8,!) H(6,6,!) 

H(1,B,!) H(1,4,!) H(7,8,!) H(5,5,!) 

H ( 1 • B ,! ) H (1 , 4 ,! ) H (5 , 6 ,! ) H ( 8, 8 ,! ) 

H(1,8,!) H(1,4,!) H(5,6,!) H(7,7,!) 

TABLE 1 
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If we had to separately compute each entry in table 1, then it 

would be impossible to efficient]y generate the authentication 

paths. Fortunately, there is a great deal of duplication. If 

we eliminate all duplicate entries, then table 1 becomes table 

2: 

leaf authentication path 

Y1 H(1,a,!.) H(5,a,!.) H(3,4,!.) H(2,2,!.) 

Y2 H(1,1,!.) 

Y3 H(1,2,!.) H(4,4,!) 

Y4 H(3,3,!) 

Y5 H(1,4,!) H(7,8,!) HC6,6,!) 

Y6 H(5,5,!) 

Y7 H(5,6,!) H(8,8,!) 

Ya H(7,7,!) 

TABLE 2 

Clearly we can generate all authentication paths by 

separately computing each of the 2 n-1 entries in table 2, but 

this would require too much memory, and it is not clear what 

the execution time would be. We first consider the execution 

time, the memory requirement will be considered later. Because 

all computations must eventually be defined in terms of the 
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underlying encryption function C( key ,plaintext), it seems ap-

propriate to define execution time requirements in terms of the 

number of applications of C. One application of C counts as 

one "unit" of computation. We shall call this "unit" the "et," 

(pronounced eetee) which stands for "encryption time." 

Computing F requires a number of ets proportional to the 

length of its input. In particular, if the input is composed 

of 100 k bits, then F requires k-1 ets (see chapter 2). 

First, we must determine the cost of computing the indivi-

dual entries. The algorithm for computing H(i,j,I) from Y does 

a tree traversal of the subtree whose leaves are Y., Y. l' 
1 1+ 

Y. 2' ••• Y .• At each non-leaf node in this traversal it does 
1+ J 

1 et of computation (one application of F to a 200-bit argu-

ment). A tree with j-i+1 leaves has j-i non-leaf nodes, i.e., 

j-i nodes internal to the tree. For example, a tree with 8 

leaves has 4 + 3 + 2 + 1 = 10 internal nodes. Because there 

are j-i non-leaf nodes, computing H(i ,j ,I) requires j-i ets, 

excluding the leaves. The computations required to regenerate 

a leaf (using a truly random seed in a pseudo random number 

generator) will be fixed and finite. Let r be the (fixed) 

number of ets required to regenerate a leaf. There are (j-i+1) 

leaves, so the overall cost of computing HCi,j,I) is (j-i) + 

(j-i+1) • r ets. In practice r will be a few hundred, so we 

can approximate this by (j-i+1) • r ets. 

We can now approximate the cost of computing each entry in 

table 2. There are n entries which require about r ets, n/2 

6/4/79 Chapter V Page 49 



A CERTIFIED DIGITAL SIGNATURE 

entries which require about 2 r ets, n/4 entries which require 

about 4 r ets, and n/8 entr ies which require about 8 r ets. 

This means that the total cost of computing all entries in a 

single column is about 8 r ets. There are 4 columns, so the to

tal computational effort is about 4·8 r = 32 r ets. In gen

eral, the computational effort required to compute table 2 will 

be n • (1 + 10g2 n) • r ets. This is because computing all the 

entries in each column will require n • r ets, and there are 1 

+ 10g2 n columns. 

This result impl ies that an algorithm which sequentially 

generated the authentication paths would require an average of 

about 

r • 10g2 n (5.1) 

ets per path, where r is a constant representing the number of 

ets required to regenerate a leaf. This is quite reasonable. 

Although the time required to generate each authentication 

path is small, we must also insure that the space required is 

small and that the computational burden is smoothly distributed 

as a function of time. We can do this by again looking at 

table 2. As we sequentially generate the authentication paths, 

we will sequentially go through the entries in a column. This 

implies that at any point in time there are only two entries in 

a column of any interest to us: the entry needed in the current 

authentication path, and the entry immediately following it. 

We must know the entry in the current authentication path, for 

without it, we could not generate that path. At some point, we 
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will need the next entry in the column to generate the next au-

thentication path. Because it might require a great deal of 

effort to compute the next entry (e.g. to compute H(1,4,!», we 

need to compute it incrementally, and to begin computing it 

well in advance of the time we will actually require it to gen-

erate an authentication path. 

As an example, H(5,8,!) is required in the authentication 

paths for Y1' Y2 , Y3, and Y4 while H(1,4,!) is required in the 

paths for Y5 , Y6 , Y7, and Y8" The values of HO for the first 

authentication path must be precomputed with some del ay (dis-

cussed below). Once this precomputation is complete, the 

succeeding values of H() required in succeeding authentication 

paths must be incrementally computed. As we generate the first 

4 authentication paths, we must be continuously computing 

H(1,4,!) even though it is not needed until we reach Y5 • If we 

wai ted until time 5 to start computing it, it would take about 

4 r ets to compute and entail some delay. By computing H dur-

ing times 1 through 4, a processor capable of only r ets/unit 

time is needed. In general, if the tree is of depth k it will 

take 2k- 1 • r ets to compute the second element in the second 

column, but there are 2k- 1 time units in which to compute it, 

again requiring a processor capable of only r ets/unit time. 

Similarly, we must start computing the second element in 

the third column, H( 1, 2,!). when we generate the first authen-

tication path. It takes about 2 r ets to compute this element 

k-2) . . t (2k -2 . (2 in general • but there are 2 tlme unl s ln gen-
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era!). in which to do this. so the processor for computing en-

tries in the third column also needs to operate at only r 

ets/unit time. k-i-1 It is seen that it takes 2 • r ets to com-

t th t t . th . k-i-1 pu e _e nex en ry 1n e 1 th column and that there are 2 

time units in which to do this. Thus. only one processor is 

needed per column (10g2 n in all). and each processor need 

operate at only r ets/unit time. 

If we assume a convenient block size (of 100 bits) and if 

we ignore constant factors. then the memory required by this 

method can be computed. We can first determine the memory re-

quired by the computations in each column, and then sum over 

all 10g2 n columns. We must have one block to store the 

current entry in the column. We must al so have enough memory 

to compute the next entry in the column. The memory required 

while computing H<i,j,.!) is 1 + 10g2 (j-i+1) blocks. This as-

sumes a straightforward recursive algorithm whose maximum stack 

depth will be 1 + 10g2 (j-i+1). The memory required to recom

pute a leaf (to recompute H<i,i.!» is ignored because it is 

small (a few blocks). constant. and the same memory can be 

shared by all the columns. Representing the memory require-

ments of H() in a new table in the same format as table 2 gives 

table 3: 
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leaf memory required to compute entries 

in authentication path (in blocks) 

Y1 II 3 2 

Y2 

Y3 2 

Y4 

Y5 3 2 

Y6 

Y7 2 

Y8 1 

TABLE 3 

Table 3 shows the memory required to compute each entry in 

table 2. Clearly the memory required to compute H(i,i,I) is 1. 

The memory required to compute H(1,2,I) = 1 + the memory re-

quired to compute H( 1,1 ,I) since we first compute B( 1,1 ,I) and 

must remember it to compute H(1,2,I). Similarly, to compute 

H(1,2t ,I) requires one more memory location than was needed for 

t-1 H(1,2 ,I). The memory required for each column will be about 

the memory required during the computation of a single entry in 

the column because once an entry is computed, the memory is 

available to compute the next entry and the old entry is dis-

carded after use. This means the total memory required will be 

about: 3 + 2 + 1 = 6 blocks. (This assumes we do not recompute 

H(1,8,I))· 
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For n in general, there are 10g2 n columns and each column 

requires, on an average, (10g2 n)/2 blocks so the total memory 

required will be on the order of: 

2 (10g2 n) 12 blocks 

This means that the memory required when n = 220 

(1,048,576) is about 20'20/2 = 200 blocks. For 100 bit blocks, 

this means 20 kilobits, or 2.5 kilobytes. Other overhead might 

amount to 2 or 3 kilobytes, giving an algorithm which requires 

5 or 6 kilobytes of memory, in total. 

Readers interested in implementing this technique can use 

the following program, written in a Pascal-like language with 

two multiprocessing primitives added: 

1.) While <condition> wait 

2.) Fork <statement> 

In addition, the function "MakeY(i)" will regenerate the value 

of Y. from the truly random seed. 
1 

Declare flag: array[O •• 10g2Cn)-1J of integer; 

AP: array[0 •• 10g2(n)-1J of block; 

(* AP -- Authentication Path *) 

Procedure Gen(i); 

Begin 

i+1 For j:= 1 to n step 2 Do 
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Begin 

Emit(i,H(j+2 i ,j+2 i +1-1»; 

Emit(i,H(j,j+2i -1»; 

End; 

End; 

Procedure Emit(i,value); 

Begin 

While flag[i] i 0 wait; 

APU]:= value; 

i flagU]:= 2 ; 

End; 

Procedure H(a,b); 

Begin 

If a = b Return( F(~akeY(a») 

Else 

Return(F(H(a,(a+b-1)/2),H«a+b+1)/2,b»; 

(* Note that F should be parameterized by 

the user's name and by a and b. If 

this is not done, Y must be made larger 

to assure security (see chapter II). *) 

End; 
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(* The main program *) 

Begin 

For i := 0 to 10g2(n)-1 Do 

Begin 

flag[i]:= 0; 

Fork GenCi); 

End; 

For j:= 1 to n Do 

Begin 

Print("Authentication Path ", j, " is:"); 

For k := 0 to 10g2Cn)-1 Do 

Begin 

While flag[k] = 0 wait; 

PrintCAP[k]); 

flag[k]:= flag[k]-1; 

End; 

End; 

End; 

The general structure of this program is simple: the main 

routine forks off 10g2 n processes to deal with the 10g2 n 

columns. Then it prints each authentication path by sequen

tially printing an output from each process. The major omis

sion in this program is the rate at which each process does its 
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computations. It should be cleC'lr from the previous discussion 

that each process has adequate time to compute its next output. 

There are three major ways of improving this algorithm. 

First, each process is completely independent of the other 

processes. However, separate processes often require the same 

intermediate values of H(), and could compute these values once 

and share the result. 

Second, values of H() are discarded after use, and must be 

recomputed later when needed. While saving all values of H() 

takes too much memory, saving some values can reduce the compu

tation time and also reduce memory requirements. The reduction 

in memory is because of the savings in memory when the saved 

value is not recomputed. Recomputing a value requires memory 

for the computation, while saving the value requires only a 

single block. 

Finally, the memory requirements can be reduced by care

fully scheduling the processes. While it is true that each 

process requires about 10g2 n blocks of memory, this is a max

imum requirement, not a typical requirement. By speeding up 

the execution of a process when it is using a lot of memory, 

and then slowing it down when it is using little memory, the 

average memory requirement of a process (measured in block

seconds) can be greatly reduced. By scheduling the processes 

so that the peak memory requirements of one process coincide 

wi th the minimum memory requirements of other processes, the 
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total memory required can be reduced. 

All three approaches deserve more careful study because 

the potential savings in time and space might be large. Even 

wi thout such improvements the technique is completely practi-

cal. 

Before the time requirements of the algorithm can be fully 

analyzed, a description of MakeY is needed: i.e., we must 

determine r in equation (5.1). If we assume that the improved 

version of the Lamport-Diffie algorithm is used, then MakeY 

must generate pseudo-random Xi vectors, from which Yi vectors 

can then be generated. If the one way hashed messages are all 

100 bits long, then the Xi vectors will have 100 + 10g2 100 = 

107 elements. 

The X. vect.ors can be generated using a conventional ci-
1 

pher, C(key,plaintext). A single 200 bit secret key is re-

quired as the "seed" of the pseudo-random process which gen-

erates the Xi vect.ors. The output of C is always 100 bits, and 

the input must be 100 bits or fewer, (if fewer, O's are append-

ed). We can now define x .. as l,J 

x. . = C ( seed ke y , < i , j> ) 
l,J 

where "seedkey" is the 200 bit secret and truly random key used 

as the "seed" of this somewhat unconventional pseudo-random 

number generator. The s}Jbscript i is in the range 1 to n, 

while the subscript j is in the range 1 to 107. There are n 

possible messages, each 100 bits in length. Each Xi is a vec-
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tor xi ,1' xi ,2' ••• xi ,107' 

Determining any xi ,j knowing some of the other xi ,j' s is 

equivalent to the problem of cryptanalyzing C under a known 

plaintext attack. If C is a good encryption function, it will 

not be possible to determine any of the xi . without already ,J 

knowing the key. The secret vectors Xi are therefore safe. 

We know that Yi . = F(x .. ), and that HCi,i,Y) = F(Y.) = 
,J 1,J - 1 

F(Yi,1' Yi,2' Yi,3' .•• Yi,107). The cost of computing F(Y i ) 

is 106 ets, because Yi is 107'100 bits long. The total effort 

to compute H( i ,i ,I) is the effort to generate the elements of 

the Xi vector, plus the effort to compute F(Xi 1)' F(xi 2)' ••• , , 
F(x. ), plus the effort to compute F(Yi ). This is 107 ets to 1,n 

compute the Xi vector, 107 ets to compute the Yi vector, and 

106 ets to compute F(Y.) = HCi,i,Y). This is a total of 320 
1 -

ets to regenerate each leaf in the authentication tree. 

Using equation (5. 1 ), we know that the cost per authenti-

cation path is 320 10g2 nets. 20 For n = 2 ,this is 6400 ets. 

To generate authentication paths at the rate of one per second 

implies 1 et is about 160 microseconds. While easily done in 

hardware, this speed is difficult to attain in software on 

current computers. Reducing the number of ets per authentica-

tion path is a worthwhile goal. This can effectively be done 

by reducing either the cost of computing H(i,i,!), or by reduc-

ing the number of times that H(i,i,!) has to be computed. 

As mentioned earlier, keeping previously computed values 

of H() rather than discarding them and sharing commonly used 
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val ues of H() among the 10g2 n processes reduces the cost of 

computing each authentication path. In fact, a reduction from 

over 6000 ets to about 1300 ets (for n = 220) can be attained. 

(To put this in perspective, MakeY requires 320 ets and must be 

executed at least once per authentication path. Therefore, 320 

ets is the absolute minimum that can be attained without modi-

fying MakeY.) This means the path regeneration algorithm can 

run in reasonable time (a few seconds) even when the underlying 

encryption function, C, is implemented in software. 
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6. Conclusion 

Digital signature systems not requiring public key cryp

tosystems are possible and desirable because they are easy to 

certify. Such a system was described which had modest space 

and time requirements and a signature size of about 15 kilo

bits. The method described can be implemented at once, with no 

delay due to certification. 
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1. Introduction 

This chapter describes a public key cryptosystem based on 

the knapsack problem. Given a one-dimensional knapsack of 

length Sand n rods of lengths a a the "k k 1. 2 •.•• ,an , napsac 

problem" is to find a subset of the rods which exactly fills 

the knapsack, if such a subset exists. Equivalently, find a 

binary n-vector ~ such that S = ~ * ~. if such an x exists, (* 

applied to vectors denotes dot product.) 

A supposed solution ~ is easily checked in at most n addi-

tions, but finding a solution is believed to require a number 

of operations which grows exponentially in n. Exhaustive, tri-

al and error search over all 2n possible ~'s is computationally 

infeasible if n is larger than one or two hundred. The best 

published method for solving knapsacks of the form considered 

here requires 2n/2 complexity both in time and memory [10J. In 

addition, Schroeppel [33J has devised an algorithm which takes 

O(2n/2) time and O(2n/ 4 ) space. Theory supports the belief 

that the knapsack problem is hard because it is an NP-complete 

problem [footnote page 81], and is therefore one of the most 

difficul t computational problems of a cryptographic nature [1 

pp 363-404J [6]. Its degree of difficulty, however, is cru

cially dependent on the choice of a. If ~ = (1,2,4, ••• 2n- 1), 

then solving for x is equivalent to finding the binary 
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representation of S. Somewhat less trivially, if for all i, 

(6.1) 

then ~ is also easily found: xn =1 if and only if S ~ an and, 

for i = n-1,n-2, ••• 1, xi = 1 if and only if 

n 

s -~ x • a. > L.J j J 

j=i+1 

(6.2) 

While the theory of NP-complete problems and these exam-

pIes demonstrate that the knapsack problem is only difficult 

from a worst case point of view, it is probably true that 

choosing the a i independently and uniformly from the integers 

between 1 and 2n generates a difficult problem with probability 

tending to one as n tends to infinity. While several efficient 

algorithms exist for solving the knapsack problem under special 

conditions [10], [11], [16], none of these special conditions 

is applicable to trap door knapsacks generated as suggested in 

this chapter. 

A trap door knapsack [6] is one in which careful choice of 

a allows the designer to easily solve for any ~, but which 

prevents anyone else from finding the solution. We will 

describe one method for constructing a trap door knapsack, and 

another (multiplicative) method due to Hellman is described in 

[21]. We first indicate how knapsacks can be used to hide in-

formation. Each user I in a system generates a trap door knap-
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sack vector, ~(I), and places it in a public file with his name 

and address. When someone wishes to send the binary informa

tion vector x to the Ith user, he sends S = x * a(T). The in

tended recipient can recover x from ~ but no one else can. 

Section 5 shows how trap door knapsacks can be used to generate 

electronic signatures and receipts [6]. 

Eefore proceeding, a word of caution is in order. First, 

as is always the case in computational cryptography, we cannot 

yet prove that the systems described in this chapter are 

secure. For brevity, however, we will not continue to repeat 

this. Second, the trap door knapsacks described in this 

chapter form a proper subset of all possible knapsacks and 

their solutions are therefore not necessarily as difficult as 

for the hardest knapsacks, and it is the hardest knapsacks with 

which NP theory is concerned. 
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2. ! Method for Constructing Trap Door Knapsacks 

The designer chooses two large numbers, m and w, such that 

w is invertible modulo m (equivalently GCD(w,m)=1). He selects 

a knapsack vector,.!' which satisfies (6.1) and therefore al-

lows easy solution of S' = a' * x. He then transforms the 

easily solved knapsack vector a' into a trap door knapsack vec-

tor a via the relation 

a i = w • a'i mod m (6.3) 

The a i are pseudo-randomly distributed and it therefore appears 

that anyone who knows .!' but not wand m, would have great dif-

ficulty in solving a knapsack problem involving a. The 

designer, on the other hand, can easily compute 

-1 S' = w • S mod m 

-1 
·E = w xi 

= w • xi -1 E 

= Ex .• a'. 
1 1 

If m is chosen so that 

m > ~ a' LJ i 

• a. mod m 
1 

• w • a' i mod m 

mod m 

then (6.7) implies that S' is equal to 2':xi 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

a' i in integer 

arithmetic as well as mod m. This knapsack is easily solved 

for ~, which is also the solution to the apparently difficult, 

but trap door, knapsack problem S = ~ * ~. 
To help make these ideas clearer, we give a small example 

with n = 5. Taking m = 8443, .!' = (171,196,457,1191,2410). and 

-1 w = 2550 (so w = 3950). then a = (5457,1663.216,6013,7439). 

6/4/79 Chapter VI Page 65 



THE TRAPDOOR KNAPSACK 

Given S = 1663 + 6013 + 7439 = 15115, the designer computes 

-1 S' = w • S mod m (6.9) 

= 3950 • 15115 mod 8443 (6.10) 

= 3797 (6.11) 

Because S' > a'5' he determines that x5 = 1. Then, using (6.2) 

for the a' vector, he determines that x4 = 1, x3 = 0, x2 = 1, 

x1 = 0, which is also the correct. solution to S = a * x. 

Anyone else who does not know m, ~', and w has great dif-

ficul ty in solving for .! in S = a * .! even though the general 

method used for generating the trap door knapsack vector a must 

be public. His task can be further complicated by scrambling 

the order of the ai' and by adding different random multiples 

of m to each of the a i • 

The example given was extremely small in size and only in-

tended to illustrate the technique. Using n = 100, which is 

the bottom end of the usable range for secure systems, m can be 

chosen uni formly from the numbers between 2201 + 1 and 2202 -

1· a' b h . f 1 f th [1 2100 ]. , , 1 can e c osen unl orm y rom e range, , a 2 

can be chosen uniformly from [2'00 + 1, 2·2'°°]; 

chosen uni formly from 

a' can be 
3 

a' . 
1 

can be 

chosen uniformly from [(2i -'_1).2'00+1, 2i - 1.2'00)]; ••• a'100 

can be chosen uniformly from [(299_1).2'00 +1, 299 .2'°°]; and 

w can be chosen uniformly from [2, m-2] and then repeatedly di-

vided by the greatest common divisor of wand m, to yield the 

value of w that is actually used. 

These choices ensure that (6.8) is met and that an op-
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ponent has at least 2100 possibilities for each parameter and 

hence cannot search over even one of them. Note that each a. 
1 

will be pseudo-randomly distributed between 1 and m-1 and hence 

will require a 202 bit representation. S will require a 209 

bit representation, so there is a 2.09: 1 data expansion from x 

to S. 
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3. An Iterative Method 

This section discusses techniques for improving the secu-

rity and utility of the basic methods. 

In the first method we transformed a hard and apparently 

very difficult knapsack problem, ~. into a very simple and 

easily solved knapsack problem, ~', by means of the transforma-

tion: 

-1 a ' . = w ·a. mod m 
1 1 

(6.15) 

We could solve a knapsack invol ving ~ because we could solve a 

knapsack involving ~'. Notice, though, that it does not matter 

why we are able to solve knapsacks involving ~', all that 

matters is that we can solve them. Rather than requiring that 

~' satisfy (6.1), we could require that a ' be transformable 

into a new problem, ~", by the transformation: 

-1 a I I. = w'. a I. mod m I 
1 1 

(6.16) 

where the new problem, ~", satisfies (6.1), or is otherwise 

easy to solve. Having done the transformation twice, there is 

no problem in doing it a third time. That is, we select an a" 

which is easy to solve, not because it satisfies (6.1), but be-

cause it can be transformed into ~"', which is easy to solve, 

by: 

-1 a I I I. = W I I • a I '. mod m I , 
1 1 

(6.17) 

It is clear that we can repeat this process as often as we 

wish. 

With each successive transformation, the structure in the 

6/4/79 Chapter VI Page 68 



THE TRAPDOOR KNAPSACK 

publicly known vector, ,!, becomes more and more obscure. In 

essence, we are encrypting the simple knapsack vector by the 

repeated application of a transformation which preserves the 

basic structure of the problem. The final result,! appears to 

be a collection of random numbers. The fact that the problem 

can be easily solved has been totally obscured. 

The effect of repeating the process several times is very 

different from that obtained with certain ciphers, such as a 

simple substitution. A simple substitution cipher is not 

strengthened by repetition because the composition of two sub-

stitution ciphers is yet another substitution cipher. The 

(w,m) transformations do not have this closure property. The 

following example shows that the repetition of two (w,m) 

transforms i.s not in general equivalent to a single (w,m) 

transform. 

If w = 3, m = 89, w' = 17, m' = 47, and .!" = (5,10,20) 

t.hen a' = <38,29, 11) and a = (25, 87,33) • Assume there ex ists w 

and m such that 

a = w • a" mod m 

Then a 1 = 25 and a"1 = 5 implies that 

25 = w • 5 mod m 

From this we have 

2 • 25 = w • 2 • 5 mod m 

or 

(6.18) 

(6.19) 

(6.20) 

50 = w • 10 mod m (6.21) 

But now the relation a2 = 87 and a"2 = 10 implies that 
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,.. 
87 = w • 10 mod m (6.22) 

,.. 
so 87 = 50 mod m, or 37 = 0 mod m, which implies that m = 37. 

Equation (6.19) then becomes 
,.. 

25 = m • 5 mod 37 (6.23) 
,.. 

so w = 5. But if w = 5, and m = 37, then equation (6.18) for 

a3 = 33 and a"3 = 20 becomes 

33 = 5 • 20 mod 37 (6.24) 

or 33 = 26 mod 37, a contradiction. We conclude that no such w 

and m can exist. 

The original, easy to solve knapsack vector can meet any 

condition, such as (6.1) which guarantees that it is easy to 

solve. 

It is important to consider the rate of growth of ,!, be-

cause this rate determines the data expansion involved in 

transmitting the n bit vector x as the larger quantity S. The 

rate of growth depends on the method of selecting the numbers 

but, with n = 100, each a i need be at most 7 bits larger than 

the corresponding a'i' each a'i need be at most 7 bits larger 

than a"i' etc. etc. Each successive stage of the transforma

tion need increase the size of the problem by only a small, 

fixed amount. Repeating the transformat·ion 20 times will add 

at most 140 bits to each a i • If each a i is 200 bits long to 

begin with, then they need only be 340 bits long after 20 

stages, and S is representable in 347 bits. The data expansion 

is then only 3.47:1. 
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4. Compressing The Public File 

As described above, the Ith user must place his trap door 

knapsack vector, ~(I), in a public file. The Jth user can then 

look up ~(I), and send a message.! to I, hidden as S = a{I) * 
x. To avoid storing the rather large vector ~ (I), J could ask 

I to transmit a{I) to him. But, unless J has some method for 

testing ~(I), user K might fool J by sending him ~(K), and say

ing it was a{I). J would then mistakenly tell all his secrets 

to K. A method is needed for J to convince himself that he was 

really sent a{I). With a public file, each user can make one 

personal appearance when depositing his vector and, after so 

identifying himself to the system, he could identify (authenti

cate) himself to any user by his ability to decipher messages 

hidden with his vector. The file itself must be protected, but 

this is relatively easy because only write protection is need

ed. 

To preserve this authentication benefit of the public 

file, but to reduce its size(20 or more kilobits per user) we 

suggest storing a 100 bit one-way hash total, h[~{r)], instead 

of a(I) itself. When J receives a(I) from I he computes 

h[a{I)] and checks this against I's value stored in the public 

file. The hash function, h, must be a one-way function [6], 

[38], [1], [28] so that K cannot generate a new vector a{K) 

such that h[a{K)] = h[{~{I)], without having to perform a com

putationally impossible feat. 
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Allowing 200 bits for storing the user's name and address, 

(or "phone number"), the public file now contains 300 bits, in

stead of over 20 kilobits, per user. A system with a million 

users requires a 300 million bit,. instead of a 20 billion bit, 

public file. Transmission costs are comparable for both im

plementations. 

A 100 bit number can be coded as 20 alphanumeric charac

ters, which is small enough to fit in a phone book. A typical 

entry would look like this: 

Joe Smith •••••• 497-1573 

KSDJR E6K65 3GFVM OMK4K 

The extra entry, KSDJR E6K65 3GFVM OMK4K, is the one-way hash 

total of Smith's trap door knapsack vector, !.(Smith). With 

this information, we can call up Smith, and hold a secure 

conversation with him, which no one else can understand. We do 

not need to have met Smith previously to know we are talking 

with him or for him to know he is talking with us. 

Transmitting 20 kilobits on a high speed, 50 kbps link, 

takes 0.4 second, but on a low speed, 300 bps I ink, it takes 

over a minute. The transmission time can be reduced by a fac

tor of 5, to about 4 kilobits, which takes less than 15 seconds 

to transmit at 300 bps, by cutting the number of a i to n=20. 

The vector .!' however, now has only 20 binary elements, which 

is small enough to allow solution by exhaustive search. To 

maintain security, the information in the.! vector must be in

creased to about 100 bits, while keeping n = 20. This can be 
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done by allowing each element, x., to take on values in the set 
1 

{0,1,2,3, ••• ,31}, instead of just in {0,1}. Specifying each xi 

takes 5 bits, and specifying the whole vector x takes 100 bits. 

Equation (6.1) must now be modified to 

i-1 

a i > 31 • L a j 

j=1 

(6.25) 

If n is reduced to 1 and the single element of the ~ vec-

100 tor assumes a value in {0,1,2, ••• 2 -1}, then the system is 

easily broken because 

x = Sia (6.26) 

When n=2, the system can also be broken easily, by an a1-

gorithm similar in spirit to the greatest common divisor a1go-

rithm. It seems that small values of n weaken the system, and 

further research is needed to determine how small n can be, 

while still preserving security. The value n = 20 suggested 

above must be treated with suspicion until an adequate certifi-

cationa1 study is conducted. 
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5. Signatures 

As discussed in [6], the need for a digital equivalent of 

a written signature is a major barrier to the replacement of 

physical mail by teleprocessing systems. Usual digital authen

ticators protect against third party forgeries, but cannot be 

used to settle disputes between the transmitter and receiver as 

to what message, if any, was sent. A true digital signature 

allows the recipient to prove that a particular message was 

sent to him by a particular person. Obviously, it must be im-

possible for the recipient to alter the contents of the message 

and generate the corresponding signature, but it must be easy 

for him to check the validity of a signature for any message 

from any user. A digital signature can also be used to gen-

erate receipts. The recipient signs a message saying, "I have 

received the following message: TEXT." This section describes 

how trap door knapsacks might be used to generate such signa

tures and receipts. 

If every S in some large fixed range had an inverse image 

x then it could be used to provide signatures. When the Ith 

user wanted to send the message m he would compute and transmit 

x such that a(I) * x = m. The recipient could easily compute m 

from x and, by checking a date/time field (or some other redun

dancy in m), determine that the message was authentic. Because 

the recipient could not generate such an ~ he saves x as proof 

that the Ith user sent him the message m. 
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This method of generating signatures can be modified to 

work when the density of solutions (the fraction of S between 0 

and ~ a i which have solutions to x * ~ = S) is less than '. 

provided it is not too small. The message m is sent in pla1n-

text form. or encrypted if eavesdropping is a threat. and a se-

quence of one-way functions [6J. [38J. [7J. [28J y, = F,(m). Y2 

are computed. The transmitter then seeks inverse 

images for y1. y2 •••• until one is found and appends the 

corresponding ~ to m as a signature. The receiver computes y = 

a * x and checks that y is equal to Yk with k not too large. 

for example at most 10 times the expected value of k. 

or 

The sequence of functions F.(·) can be as simple as; 
1 

F. (m) = F(m) + i 
1 

F. (m) = F(m+i) 
1 

(6.20a) 

(6.20b) 

where F(·) is a one-way function. It is necessary that the 

range of F(·) have at least 2100 values to foil trial and error 

attempts at forgery. If the message is much longer than '00 

bits. the expansion caused by the addition of a 100 bit authen-

tication field is unimportant. 

If the trap door knapsack vector were generated as sug-

gested at the end of section 2. the solution density would be 

less than '/(2 100 ). and over 2100 Yk would have to be tried. on 

the average. before one with a solution was found. It is pos-

sible. however. to use the iterative method of section 3 to ob

tain a solution density of approximately 1/(10~) with two 
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iterations or 1/(106) with three iterations, when n = 100. 

First, a knapsack vector ~" with a solution density near 1 is 

selected. If ~" = (1,2,4,8, •.. ,299 ) then the solution density 

is 1, but increasing some of the larger a"i need not greatly 

reduce the solution density. For example, 

(1,2,4,8,17,35.68,142) has a solution density of .92 and still 

satisfies (6.1). Such choices may not be necessary, but they 

provide an additional margin of safety at almost no additional 

cost. 

After selecting ~' " parameters m' and w' are chosen such 

that m' > a" i and w-', exists modulo m'. The weak trap 

door knapsack vector 

a'=w'·a" mod m' (6.27) 

is then computed. New parameters m > a'. and w (wi th w 2: -1 
- 1 

eXisting mod m) are chosen, and the more secure trap door knap-

sack vector 

a = w • a' mod m (6.28) 

is computed. The process can be iterated more than twice to 

obtain the final vector, ,!, but the solution density typically 

decreases by a factor of n/2 with each iteration. When used 

for hiding information this decrease is of little importance, 

but when used for signatures, several iterations are all that 

can be afforded because of the need for a high solution densi-

ty. With so few iterations, it is possible for two adjacent a i 

to be in the same ratio (usually 2: 1) as they were in the ~ 

vector. This weakness can be overcome by adding multiples of 
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m' (or m) to a subset of the a'i (or a i ) which suffer from this 

problem. This decreases the solution density somewhat, and ac

counts for our 1/(104) and 1/(106) estimates for two and three 

iterations when n = 100. 

A small example is again helpful in illustrating the 

method. Starting with 

~" = (1,2,4,8,17,35,68,142) (6.29) 

whose components sum to 277, we choose m' = 291 and w' = 176 

( -1 
w' = 167), resulting in 

~' = (176,61,122,244,82,49,37,257) (6.30) 

The second, third and fourth components are in the ratio of 2:1 

which can be hidden by adding m' to the third component to ob-

tain the new vector 

a' = (176,61,413,244,82,49,37,257) (6.31> 

whose components sum to 1319. Choosing m = 1343, w = 498 (w-1 

= 925) yields 

~ = (353,832,195,642,546,228,967,401) (6.32 ) 

whose components sum to 4164 • The density of solutions using a 

is 256/4164 = .061 so approximately 16 attempts are needed, on 

the average, to obtain a signature. This agrees well with the 

2 2 estimated range of n /4 = 16 to n = 64. 

The density of solutions can be increased by restricting 

the Yk to I ie near the midd Ie of the range (0, ~ a . ), say L-l 

between 1000 and 3000 in this example. The law of large 

numbers indicates that for most .!' the sum a * x will lie in 

this range. 
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Shamir [43] has developed a different method of using the 

knapsack problem to obtain signatures. 
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6. Discussion 

We have shown that it is possible to construct trap door 

knapsack problems and that information and signatures can be 

hidden in them for transmission over an insecure channel. Con

ventional cryptographic systems also can hide information and 

authenticators during transmission over an insecure channel, 

but have the disadvantage that first a "key" must be exchanged 

via courier service or some other secure means. Also, in con-

ventional cryptography, the authenticator only prevents third 

party forgeries and cannot be used to settle disputes between 

the transmitter and receiver as to whether a message was actu

ally sent. 

We have not proved that it is computationally difficult 

for an opponent who does not know the trap information to solve 

the problem. Indeed, proofs of security are not yet available 

for normal cryptographic systems, and even the general knapsack 

problem has not been proved difficult to solve. The theory of 

computational complexity has not yet reached the level of 

development where such proofs are feasible. The best published 

algorithm for solving the knapsack problem is exponential, tak

ing 0(2n/2 ) time and space [10 J. Schroeppel [33, unpublished] 

has devised an algorithm which takes 0(2n/2 ) time and 0(2n/4 ) 

space. 

Faith in the security of these systems must therefore rest 

on intuition and on the failure of concerted attempts to break 
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them. 

Attempts to break the system can start with simplified 

problems (e.g. assuming m is known) (see chapter VII section 

5.) If even the most favored of certificationa1 attacks is un

successful, then there is a margin of safety against cleverer, 

wealthier, or luckier opponents. Or, if the favored attack is 

successful, it helps establish where the security really must 

reside. 

As noted, the techniques suggested in this chapter gen

eralize to xi in the set {0,1,2,3, ••• ,Nl. The advantages and 

weaknesses of such systems deserve further study. 

Recently, Rivest, Shamir, and Ad1eman [31] have proposed 

another public key cryptosystem, which yields signatures more 

directly because the density of solutions in their problem is 

1. Their system also requires a smaller key (apparently 600 

bits versus 20 ki10bits); but is significantly slower. Neither 

system's security has been adequately established but, when 

iterated, the trap door knapsack appears less likely to possess 

a chink in its armor. When used for obtaining signatures, the 

trap door knapsack appears to be the weaker of the two. Both 

public key systems clearly need further certification and 

study. 
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7. Footnote 

Other definitions of the knapsack problem exist in the 

literature [10], [11J, [31J. The definition used here is 

adapted from Karp [13]. To be precise, Karp's knapsack problem 

is to determine whether or not a solution ~ exists, while the 

corresponding cryptographic problem is to determine what x is, 

given that it exists. The cryptographic problem is not NP

complete, but is just as hard as the corresponding NP-complete 

problem. If there is an algorithm for solving the cryptograph

ic problem in time T(n), i.e., for determining ~ given that it 

exists, then we can determine whether or not an x exists in 

time T(n), Le., solve the corresponding NP-complete problem. 

If the algorithm determines ~ in time T(n), then some ~ exists. 

If the algorithm does not determine ~ in time T(n), or deter

mines an incorrect x --which is easily checked-- then no such x 

exists. 
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1. Introduction 

Although the knapsack problem can be used as the basis of 

a public key cryptosystem, a closer investigation of its secu

rity is needed in order to select the size and exact type of 

trapdoor knapsack to use. This chapter is a study of the knap

sack problem from several perspectives, in an attempt to deter

mine how secure it is, and what type of trapdoor knapsack is 

most sui table for actual implementation. Besides discussing 

the best known algorithms for solving the knapsack problem, and 

for solving special cases of the trapdoor knapsack problem, it 

also gives direct reductions of Boolean circuits to the knap

sack problem. (The problem of Boolean circuits has already 

been shown to be NP-complete. As a byproduct of this reduction 

we show that if DES [24] is secure, so are general knapsacks 

with n = 10,000.) The proofs presented are accessible to anyone 

with a modest knowledge of Boolean circuit theory, and require 

no theoretical background, (in particular, no knowledge of NP 

complete problems is assumed.) They can serve to demystify com

plexity theory as applied to the knapsack problem. 

There are two aspects to the complexity of the knapsack 

problem. First, does there exist a method of solving the trap

door knapsack which cannot solve the general knapsack problem? 

That is, is the trapdoor knapsack problem easy to solve even 

though the general knapsack problem is NP-complete and there-
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fore presumably hard to solve? Secondly. what is the complexi

ty of the general knapsack problem? Do there exist unusually 

efficient algorithms for solving the knapsack problem? Do 

there exist algorithms which will rapidly solve some knapsack 

problems? This chapter first attempts to give a better idea of 

the complexity of the general knapsack problem. both by consid

ering the most efficient algorithms known for its solution. and 

by examining direct reductions of Boolean circuits to the knap

sack problem. It will then examine some algorithms which can 

efficiently break certain specialized cases of the trapdoor 

knapsack problem. 
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2. The Knapsack Problem 

The knapsack problem is: given an integer S and an integer 

vector a = a 1, a 2 , a 3 , ••• an find a vector ~ = x1 ' x2 '.·· xn 

where x. is in {O, 1} such that S = x * ~, (where n* n denotes 
1 

dot product.) 

Karp [13] showed that this problem is NP-complete. The 

best published algorithm for solving this problem requires 2n/2 

operations and 2n/2 memory [10 J. This algorithm is simpl e in 

nature: all possible sums involving a 1, a 2 , ••• an/2 are gen

erated, and the 1 ist of 2n/2 possible sums is sorted. Then, 

all possible sums involving an/2+1 , an/2+2 , an are gen-

erated, each sum is subtracted from S, and the resulting list 

of numbers is sorted. If a number in the first list matches a 

number in the second 1 ist, then a sol ut ion ex ists and can be 

readily computed. (An unpublished algorithm which runs in time 

2n/2 and in space 2n/4 has been discovered by Schroeppel [33]). 

The proof by Karp that this problem is NP-complete is 

elegant and concise, but gives little hint as to whether the 

best known algorithms (mentioned above) are very close to the 

best possible algorithms or whether much better algorithms are 

possible. A more fundamental problem with the use of the 

theory of NP complete problems is that the nondeterministic po-

lynomial time Turing machine was reduced to the knapsack prob-
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lem, but the actual complexity of a nondeterministic Turing 

machine has not been investigated closely enough for crypto

graphic purposes: in cryptography, constant factors are VERY 

important. 

Rather than reduce a non-deterministic Turing machine to 

the knapsack problem, it is more appropriate to reduce Boolean 

circui ts to the knapsack problem. The rationale for this is 

simple: modern cryptographic systems are actually built out of 

Boolean circuits, i.e., "and," "or" and "not" gates. Crypto

graphic systems built out of arbitrary combinations of -such 

logical building blocks have already been certified. As a 

consequence, reducing Boolean circuits to the knapsack problem 

directly will not only let us infer that the knapsack problem 

is NP-complete, it will also let us draw some inferences about 

a lower bound on n needed for a secure system. If it is possi

ble to embed the problem of cryptanalyzing an already certified 

cryptographic system into a knapsack problem with n = 10, 000, 

then we can safely infer that there is no uniformly fast algo

rithm which can solve knapsack problems with n = 10,000. 

Furthermore, the details of the actual reduction might give us 

some feel for the security of the knapsack problem. 

We first extend the problem of Boolean circuits by includ

ing a multi-input multi-output "gate," which is intended to 

model the ROM-based S-boxes (substitution boxes) found in many 

modern cryptographic functions. We define a "(k,m)S-box" as a 

device with k Boolean inputs, and m Boolean outputs, where the 
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function which determines the output from the input is arbi

trary. As an example, figure 1 shows the truth table for a 

<3, 2)S-box. 

input output 

000 01 

001 11 

010 00 

011 10 

100 11 

101 11 

110 01 

111 00 

Figure 1 

The reader should notice that "and" and "or" gates are 

just (2,1 )S-boxes, and a "not" gate is just a (1,1 )S-box. 

These devices will therefore not be considered separately. 

In order to embed a modern cryptographic function into the 

knapsack problem, it is sufficient if we can embed arbitrary 

(k,m)S-boxes and their interconnections. This can be done 

easily, and the (3,2)S-box of figure 1 is shown in figure 2 em

bedded in a knapsack problem with p = 13. The {ail and Shave 

been chosen so that exactly 8 .! vectors satisfy S = a * x and 

these 8 vectors specify the data of figure 1 under the follow-

6/4/79 Chapter VII Page 86 



HOW SECURE IS THE TRAPDOOR KNAPSACK? 

ing interpretation. 

a 1 = 000--01---------1 

a2 = 001--11---------1 

a3 = 010--00---------1 

a4 = 011--10---------1 

a5 = 100--11---------1 

a6 = 101--11---------1 

a7 = 110--01---------1 

a8 = 111--00---------1 

input a9 = 100--00---------0 

input 2 a 10 = 010--00---------0 

input 3 a 11 = 001--00---------0 

output a 12 = 000--10---------0 

output 2 an = 000--01---------0 

sum s = 111--11---------1 

Figure 2 

The a. are shown in binary. and "-" is used for zero's 
1 

which are not structurally important. but which are used only 

for spacing and to prevent carries between the three structural 

fields during addition of the ai • x9 • x10 • and x11 represent 

the 3 input values to the S-box in complementary notation. If 
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X9 is 0, then input 1 to the S-box is a 1. If x9 is a 1, then 

input 1 is a O. Similarly for x10 and x11 • The outputs are 

represented, again in complementary logic, by x12 and x13 • The 

variables x1 through xa are not interpreted, they are part of 

the "internal workings" of this S-box representation. The fi

nal "1" in a 1 through aa coupled with the requirement that S 

end in 1 guarantees that only one of x1 through xa can be a 1, 

all the rest must be o's. 

Perhaps the best explanation of this S-box is to work 

through an example of what happens when a given 3-bit input is 

specified as part of the ~ vector, and how it eventually pro

duces the correct 2-bit output, also as part of the x vector. 

Figure 1 shows that on input 110 this S-box must produce 

output 01. Input 110 corresponds to x9 = 0, x10 = 0, and x11 = 

1, and output 01 corresponds t.o x12 = 1 and x13 = O. To force 

a7 , which corresponds to this input-output pair, to be included 

in the sum we set the first three bits of S to 111. Only one 

of x1 through x8 can be a 1, and the Xi selected must make the 

first 3 bits of the sum equal 111. Because carries are 

prevented between the three structural fields, the only possi

ble choice is x7 = 1, and the rest of x1 through xa are equal 

to O. Now, x7 has a two-bit "output" section, which is the 

correct output (01) for the original input 110. By choosing 

the second field in S to be 11 we force x12 and x13 to assume 

the correct out put in complementary notation (10) in a manner 

analogous, but precisely reversed, from the manner in which the 
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input selected x7 in the first place. 

The reader should note that a, through a8 in figure 2 are 

nearly exact copies of the S-box shown in figure " the only 

change being the addition of structurally unimportant D's, in

dicated with "-". The last structural field is the constant, 

,. Each of a9 through a" has a single bit, surrounded by 0 

bits to form an "identity matrix" in the first structural 

field. The same is true for a'2 through a 13 in the second 

structural field. 

The knapsack problem in figure 2 models the (3,2)S-box in 

figure 1, but the details of how to interconnect two or more 

S-boxes into a single circuit must still be developed. For 

simplicity, we do this with an example using two identical S

boxes. These can be represented by a single knapsack with n = 

26, and of twice the "wid th" as the original knapsacks with six 

structural fields. The first three fields are used only for a, 

to an to represent the first S-box. The second three fields 

are only used for a'4 through a26 to represent the second S-

box. By including a non-structural buffer of O's between 

fields three and four, any.! vector which solves the knapsack 

problem is consistent with the input/output relation of both 

S-boxes. Figure 3 shows the result of applying this procedure 

to generate two non-interconnected S-boxes identical to the S

box of figures' and 2. 

To interconnect an output from one S-box to an input of 

the other S-box, we must force the associated xi and Xj to be 
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equal to each other. To connect input 1 of the first S-box (a9 

in figure 3) to output 2 of the second S-box (a26 in figure 3) 

we must force x9 to equal x26 • This is done by making x9 

identical to x26 ' i.e., a26 is removed, and a new a9 is defined 

to be the sum of a9 and a26 • This is illustrated in figure 4. 

In general, to connect ai with a j' create a j = a j + ai' and 

delete the old 8 i • 

As an example, if we wished to have two <3,2)S-boxes ex

actly like the one shown in figures 1 and 2, and to intercon

nect the second output of one with the first input of the oth

er, the result would look like figure 3. 
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input 2 
input 3 

output 1 
output 2 

input 1 
input 2 
input 3 

output 1 
output 2 

sum 
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a 1 = 000--01---------1 
a2 = 001--11---------1 
a3 = 010--00---------1 
a4 = 011--10---------1 
a5 = 100--11---------1 
a6 = 101--11---------1 
a7 = 110--01---------1 ,-----------------
aa = 111--00---------1 :------------------

= 100--00---------0:-----------------
= 010--00---------0:-----------------
= 001--00---------0:------------------

a 12 = 000--10---------0:-----------------
a 13 = 000--01---------0:------------------

= -----------------:-000--01---------1 
= -----------------'-001--11---------1 
= ----------------- -010--00---------1 
= ----------------- -011--10---------1 
= ----------------- -100--11---------1 
= ----------------- -101--11---------1 
= ----------------- -110--01---------1 
= ----------------- -111--00---------1 

a 22 = -----------------:-100--00---------0 
a 23 = -----------------:-010--00---------0 
a 24 = -----------------:-001--00---------0 

a 25 = -----------------:-000--10---------0 
a 26 = -----------------:-000--01---------0 

s = 111--11----------:-111--11---------1 

Figure 3 
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input 1 
(and also 
output 2) 
input 2 
input 3 

output 1 
output 2 

input 1 
input 2 
input 3 

output 1 

sum 
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a 1 = 000--01---------1 ------------------
a2 = 001--11---------1 ------------------
a3 = 010--00---------1 ------------------
a4 = 011--10---------1 ------------------
a5 = 100--11---------1 ------------------
a6 = 101--11---------1 ------------------
a7 = 110--01---------1 ------------------
a8 = 111--00---------1 ------------------

a9 = 100--00---------01------01---------
a 10 = 010--00---------01-----------------
a 11 = 001--00---------01------------------

a 12 = 000--10---------01-----------------
a 13 = 000--01---------01------------------

a 14 = -----------------1-000--01---------1 
a 15 = -----------------1-001--11---------1 
a 16 = -----------------1-010--00---------1 
a 17 = -----------------1-011--10---------1 
a 18 = -----------------1-100--11---------1 
a 19 = -----------------1-101--11---------1 
a20 = -----------------1-110--01---------1 
a 21 = -----------------1-111--00---------1 

a 22 = -----------------1-100--00---------0 
a 23 = -----------------1-010--00---------0 
a 24 = -----------------1-001--00---------0 

a 25 = -----------------1-000--10---------0 

s = 111--11----------1-111--11---------1 

Figure 4 
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From figure 2 it is seen that a (k,m)S-box can be imbedded 

in a knapsack of size 2k+k+m. Outputs of one S-box will usual

ly serve as inputs to other S-boxes, so the size of the knap

sack which represents the interconnection of several S-boxes 

will be somewhat reduced from the sum of the sizes of the knap

sacks representing the isolated S-boxes. 

To model cryptanalysis, note that in a known plaintext at

tack, the key is the only free input to the circuit because the 

plaintext and ciphertext are fixed. (The known plaintext and 

ciphertext val ues can be obtained in the circuit by several 

methods, the easiest to explain is to use (1,1) S-boxes whose 

outputs are independent of their inputs.) Any .! vector which 

solves the resultant knapsack problem specifies the key in com

plementary notation. Solving the knapsack problem is thus at 

least as hard as cryptanalysis of the system modeled by the 

Boolean circuitry. 

It is now possible to embed the problem of cryptanalysis 

of a modern encryption function into the knapsack directly. As 

an example we consider embedding the National Bureau of Stan

dards Data Encryption Standard (DES) [24]. Although there is 

controversy about the security of the DES [5], [15], there is 

little doubt that an encryption function with an equivalent 

complexity could be made secure. Because the embedding we 

describe could be used to embed any encryption function of com

parable complexity into the same size knapsack problem, the 

security of the DES is not an issue. 
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We shall not consider the DES algorithm in any great de

tail, except to estimate the number and type of S-boxes it con

tains. It has 8 S-boxes, but requires 16 "rounds" or itera

tions. That is, the DES is a clocked sequential circuit which 

requires 16 clock periods to compute a result. Because we can 

model only combinatorial circuits, and not sequential circuits, 

we must "unroll" the 16 rounds into a single combinatorial cir

cui t 16 times longer than the circuitry required for a single 

round. We shall therefore compute how large a knapsack would 

be required to model a single round of the DES algorithm, and 

then multiply by 16. 

There are 8 (6,4)S-boxes involved in one round. In addi

tion, there are 80 (2,1)S-boxes used for exclusive-oring. Of 

these, 48 are used to ex-or the key with the data, and 32 to 

ex-or the two halves of the data. The result is 8 • (26 + 6 + 

4) + 80 • (22 + 2 + 1) = 1152. To continue this for 16 rounds 

would require a knapsack with n = 18432. 

This estimate is conservative (too large) for two major 

reasons: First, the (2,1)S-boxes are used for exclusive-or 

gates, and exclusive-or gates can in fact be implemented in a 

knapsack of size n = 4, rather than n = 7. Second, this counts 

the input of one S-box which is also the output of a preceding 

S-box twice, again inflating the size of knapsack needed. If 

both of these factors are taken into account, the size of the 

knapsack required shrinks to n = 11,264. A few more improve

ments can yield an n of about 10,000, but further improvements 
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become more difficult at this point. We shall use the estimate 

n = 10,000 for the rest of the chapter. 

The interpretation given to this fact (that the DES can be 

imbedded in a knapsack of size n = 10,000) is quite straight

forward: should an algorithm ex ist which can efficiently and 

uniformly solve 

DES --and all 

kna psack probl ems wi th n = 10,000, then the 

other encryption functions of similar 

complex i ty-- can be broken. Because the second statement is 

highly implausible, it is also highly implausible that any fast 

algori thm will be found for solving arbitrary knapsacks with 

n=10,000. 

The best known algorithm for solving the knapsack problem, 

coupled with the largest computer that can be imagined will be 

totally unable to solve knapsack problems with n = 1000. Even 

solution of knapsacks with n = 100 will be prohibitively expen

sive with today's technology. 

Even if we accept n = 100 as a lower bound and n = 10,000 

as an upper bound on the size of knapsack problem necessary for 

a secure system, there is still a great deal of difference 

between the two. Fortunately, the upper bound seems very 

loose. A knapsack with n = 10,000 can actually embed any DES

like encryption function with 16 • 8 = 128 (6,4)S-boxes, as 

well as some auxiliary logic. 
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3. Double Sum is Easy to Solve 

An apparently effective method for reducing the value of n 

in the trapdoor knapsack (thus reducing the size of the public 

enciphering key a) is to allow the x. to take on values in the 
- 1 

range {0,',2, 

n = , 00 and B = 

it produces n = 

S = a 1 • x 1 

P} instead of the range {O,'}. Starting with 

(the usual case) and pushing this to its lim

and E = 2'00_, with 

as the enciphering operation. Cryptanalysis is easily done by 

one division. The case n = 2 results in the double sum problem 

defined as: given integers S, a" a2, and P, find integers x, 

and x2 such that 

S = 

and 

We may assume that GCD(a 1,a2) = 

(7. , ) 

<7.2) 

since otherwise we can 

compute their GCD and divide a l' a2, and S by it to get a new 

problem with GCD(a"a 2) = 1. Then we can use the GCD algorithm 

to generate numbers y, and Y2 such that 

~ultiplying this equation by S gives 

We also have 
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If we add multiples of the second equation to the first, 

we will still have an equation which satisfies (1.'), and be

cause a, and a2 are relatively prime, it generates all possible 

solutions to (1.'). 

The solut ion must satisfy (1.'), and x, can be expressed 

in the form 

x, = k • a2 + r 

which gives 

S = a, • (k . a 2 + r) + a2 . x2 

<1.3) 

<1.4) 

Furthermore, the value of r can be computed from 

S • y, = x, = k • a2 + r mod 8 2 

or 

We must satisfy x, < P. We must also satisfy (1.') and 

(1.2), which implies x, < (S+')/a,. If x, > (S+')/a" then x2 

< 0, contradicting (1.2). If we let min = min(B, (S+')/a,) 

then these t.wo conditions reduce to x, < min. If we now select 

the largest allowable value of x" which will generate the 

smallest possible value of x2 , either it is a solution, or no 

solution exists. Using equation (1.3), we have 

k • a2 + r = x, < min 

or 

k • a2 < min - r 

or 
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k < (min - r)/a2 

so the largest allowable value of k will be 

k = (min - r - ')/8 2 

By truncating k to an integer, we obtain an exact solution 

to (7.3), and generate a value for x,. 

We now compute x2 , using the already obtained value of x" 

and determine if x2 < B. If x2 < P, we have computed the solu-

tion. Otherwise, no solution exists. 

To summarize: 

614/79 

, - a • y + a • Y2 -, 1 2 

compute r = S . y, mod a2 

compute min = min(b, (S+')/a,) 

compute k = (min - r - ')/a 2 

if k < 0, there is no solution 

truncate k 

compute x, = k • a2 + r 

compute x2 = (S - a, . x,) 1 a2 

if x2 < B then x is the solution 

otherwise no solution exists 
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4. What Value of n is Safe? 

It is clear that n = 2 is not safe. At the present time, 

al though we do not have a fully tested general algorithm for 

solving problems with n = 3, the author believes that this is 

also not sa fe. It is not clear whether n = 4 is safe, but 

small values of n, i.e., less than 10, should certainly be 

avoided at the present time. The author wishes to emphasize 

that estimates about a "safe" value of n have a large subjec-

tive component. The only method of establishing that a partic-

ular selection of parameters for the trapdoor knapsack can be 

relied on to provide a high level of security is to have a cer-

tificational attack on the system by individuals skilled in 

cryptanalysis and the particular problem area. Closer investi-

gation of the parameter n in the generalized knapsack seems 

justified before adopting a value for a particular system. 

(Certificational attacks should optimally include the creators 

of the system as one group. Those interested in initiating a 

serious certification of the trapdoor knapsack should contact 

the author.) 
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5. How ~any Iterations of the Knapsack ~ Safe? 

Although even the single iteration knapsack has not yet 

been broken, it is the author's belief that at least two or 

three iterations of the (w,m) transform are needed to produce a 

margin of safety. The author would presently feel comfortable 

with ten iterations, although, as mentioned before, such "feel-

ings" should be viewed with caution. A full certificational 

attack by several expert.s would be preferable. 

Work by the author, by Martin Hellman, and by Ad i Shamir 

[unpublished] on the security of the single iteration trapdoor 

knapsack indicates that revealing any ~ of the parameters al-

lows solution of the problem. 

Taking the three cases in order, let us assume that in ad-

dition to the public vector~, our opponent learns a'in a sin-

gle iteration trapdoor knapsack. In this case, the following 

equations hold: 

a, • w = a, mod m 

a • w = a' mod m 2 2 

which in turn implies that 

a • w • a' = a • w • a' mod m , 2 2 , 
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which together with GCD(w,m) = 1 implies 

a • a' - a • a' = k • m 
1 2 2 1 

where k is an unknown integer. 

The essential point of this computation is that we can 

easily compute a multiple of m. By repeating this trick a few 

times with other numbers from the trapdoor knapsack, we can 

compute several different multiples of m. Taking their gcd 

will then give us m, which can in turn be used to recover w. 

If all we know is m, we can often recover w using a method 

devised by Shamir [42]. The basic equations behind this method 

are: 

a 1 • w = ai mod m 

a • 
2 w = a2 mod m 

which impl ies 

mod m 

But we can compute a 1/a2 mod m, which lets us rewrite the 

equation as: 

known 

6/4/79 

= a'/a' 1 2 
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or again as 

a' . known = a' mod m 2 1 

Furthermore, we know that ai and a2 are very small com

pared with m. We therefore seek two numbers satisfying 

n1 • known = n2 mod m 

n1, n2 are small 

and hope that these two numbers are ai and a2 CShamir [42J has 

the details). In many cases, our hopes will be satisfied. In 

particular, random function arguments imply that the sol ut ion 

will be unique if lengthCai) + lengthCa2) < lengthCm). 

Although it is fairly easy to pick m small enough to foil this 

particular attack, it still indicates that m should be kept 

secret to maintain security. Although m might not satisfy the 

constraint given, it might still be possible to solve for a, 

and a2 using a generalized attack with the first three elements 

of the trapdoor knapsack. 

-1 . Finally, if w 1S known, this allows ready computation of 

-1 -1 -1 w • a 1, w • a2 and w • a ~ • 
..J 

These numbers are all equal 

to a multiple of m plus the small numbers Crelative to m) ai, 

a2 and 83, All we need do is compute a number which satisfies 

these conditions, and we have recovered m. 

Since there are three secret parameters in the single 
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iteration trapdoor knapsack and making anyone public destroys 

security, conservatism dictates using the iterated trapdoor 

knapsack even though all three parameters are secret. Much as 

product ciphers can build a strong encryption function by 

iterating weak simple ciphers, so the iterated trapdoor knap

sack builds strength by iterating the (w,m) transform. 
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6. Conclusion 

The purpose of this chapter has been to give the reader a 

better idea of the security of particular trapdoor knapsack 

problems. It seems clear at this time that a trapdoor knapsack 

with n = 1000, with 100 iterations, and with each number in the 

a vector 5000 bits long should be totally secure. Reducing 

these numbers to more practical values is essential before the 

trapdoor knapsack is used in a real system. 
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1. Introduction 

It is possible to make a conventional cipher based on the 

knapsack problem which is essentially NP-complete. Those 

knowledgeable about the theory of NP-completeness might object 

to the use of the term "tIP-complete" in these circumstances, so 

the qualification "essentially" has been added. The precise 

distinctions are more definitional than substantive and are ex

plained below. 

It appears that the proof technique used here can be gen

eralized to other ciphers. 
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2. The Basic Idea 

It is possible to create a one way function based on the 

knapsack problem by defining ~ to be the input to the function, 

S to be the output from the function, and ~ = a" a2 , ••• an as 

the function specification. This allows definition of the 

function by 

F( x) = s = x * a 

(where * denotes dot product). 

We can define a stream cipher [4J based on this: 

and the deciphering process is just: 

where ~ represents modulo two addition (exclusive or), ~ is de

fined to be the key and Pt , Ct , and F(~)t are all one bit quan

tities. Ct is the single bit of ciphertext transmitted at time 

t; Pt is the single bit of plaintext generated by A at time t; 

and F(~)t is the single bit of S needed to encrypt Pt at time 

t. 

6/4/79 Chapter VIII Page '06 



AN NP-COMPLETE CONVENTIONAL CIPHER 

The advantage of this definition is that the key, .!' is 

the argument of a one way function. and should therefore be 

difficult to determine. 

To be useful, it must be possible to send indefinite 

amounts of plaintext: P must be infinite. This implies S must 

be infinite. This in turn implies that the a. must be i.nfin-
1 

ite. (Notice that it does not imply.! is infinite.) Infinite 

a. 's are trivial: they need only be generated as indefinite 
1 

streams, least significant bit first. For each index i in 

{ 1 ,2, n}, A will transmit a. l' a. 2' 
1. 1, a. t 1, 

time t, A will transmit n + 1 bits: a 1,t, a 2 ,t, a 3,t 

and Ct' 

At 

• •• an t' , 

A uses key.! to select a subset of the a i . A adds up the 

subset of the a. to compute the sum, S. B knows .!. hence B can 
1 

also compute S. (Everyone knows ~. which is public knowledge.) 

Because the a. are infinite in length, S will also be in-
1 

finite in length. As the a i are transmitted, least significant 

bit first, it will become possible for B to compute S, also 

least significant bit first. That is, S will be a bit stream, 

computable from the n bit streams a l' a 2 , •.• an' and the key 

x. 
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This is illustrated in figure 1. 

time t: 9 8 7 6 5 4 3 2 

a 1 = 0 o 0 0 1 0 1 1 0 0 

a2 = 1 0 1 0 1 001 0 

a 3 = 1 0 0 0 1 1 0 0 0 0 0 

an = •••• 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 

S = 

P = 

o 1 0 1 0 0 0 0 

1 o 0 0 0 

o 0 

000 

C = 000 0 0 0 0 0 0 0 

Figure 1 

E cannot learn.! without solving the knapsack problem but 

it seems conceivable that E might be able to deduce some por

tion of S without ever knowing.!. In the following paragraphs, 

this is shown to be impossible. 

If we assume E attacks this cipher under a known plaintext 

attack, then E knows St for t < the present time. This is be

cause 
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In spite of this, E will not be able to compute St for any t > 

the present time, even given the full values of the a i (which 

extend indefinitely into the future) without also solving for 

.!' and thus solving the knapsack problem. This can be proven 

by contradiction. 

Assume E can predict St for some t > the present time and 

for any value of the a .• To determine if x. is a 0 or a 1, E 
1 1 

makes two predictions. E first predicts St' and then makes 

another prediction St after complementing the single bit, ai,t. 

If St i St' then xi must be a 1, otherwise it must be a O. 

This proves that solving this cipher for even one bit of 

unknown plaintext allows E to recover one of the xi. Repeating 

this n times allows recovery of the x vector, thus solving the 

knapsack problem. 

Why is this cipher only "essentially" NP-complete? In 

essence, the question is the distinction between the following 

two problems: 

Find .!' given that we know it exists. 

Determine whether or not x exists. 

The latter is the knapsack problem, and is NP-complete. 

The former is not quite the knapsack problem, and I have been 

calling it "essentially" NP-complete. 

From a cryptographer's point of view there is not much 

difference between these two problems. If an algorithm exists 
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that will find x in time Ten), then we can determine whether or 

not ~ exists by running the algorithm for time Ten) and noting 

whether it produces the correct ~ at the end of that time. If 

it does produce the correct ~, then x ex ists. If it did not 

find any ~ in that time, no ~ exists. 

It can be argued that this "proof" is inadequate because 

we have not taken into account the time required to compute T 

itself. It is not the purpose of this chapter to provide air

tight theoretical definitions, simply to point out that such 

theoretical considerations ex ist, but do not appear to be im

portant for cryptographic applications. 
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3. Conclusion 

A conventional cipher which is essentially NP-complete was 

given. This cipher, based on the knapsack problem, is the 

first with this property known to the author. 
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1. Introduction 

This chapter examines the ways in which public key systems 

can be used and the special strengths they offer, by giving a 

series of example protocols. Beyond providing recipes for 

solving some specific problems, these examples are intended to 

improve the reader's ability to judge other protocols and, when 

faced with new problems, to synthesize new protocols. 

The reader is assumed to be famil iar with the general 

ideas behind public key cryptosystems, as described in [6 J. 

[4]. 

For many of the following examples, we shall need the ser

vices of two communicants, called A and P, and an opponent E. 

A and E will attempt to send secret messages and sign con

tracts, while E will attempt to discover the keys, learn the 

secrets, and forge contracts. Sometimes, A will attempt to 

evade a contract he signed with B, or B will attempt to forge 

A's signature to a new contract. 

A and B will need to apply one way functions to various 

arguments of various sizes, so we define the one way function F 

with the properties that: 
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1) F can be applied to any argument of any size. F ap

plied to more than one argument is defined to be the 

same as F applied to the concatenation of the argu

ments. 

2) F will produce an output of fixed size (perhaps 100 

bits) 

3) Given F and x it is easy to compute F(x). 

4) Given F and F(x) it must be impossible to determine 

x. 

5) Given F and x, it must be impossible to determine x' 

i x such that F(x) = F(x'). 

For a more complete discussion of one way functions, see [7], 

[38], [19] and chapter II. 
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2. Centralized Key Distribution 

Centralized key distribution using conventional encryption 

functions was the only reasonable method of handling key dis-

tribution in a multi-user environment before the discovery of 

public key distribution methods. Only conventional encryption 

functions need be used, which presently offers a performance 

advantage. (The currently known publ ic key systems are less 

efficient than conventional cryptographic systems. Whether or 

not this will continue is not now known. Discovery of new pub-

lic key systems seems almost inevitable, and discovery of more 

efficient ones probable.) 

In centralized key distribution, A, B, and all other sys-

tem users somehow deposit a conventional cryptographic key with 

a central key distribution center. Call X I S key kx, and let 

C( key ,plaintext) be the ciphertext resulting from the conven-

tiona 1 encryption function. If A wishes to communicate with B, 

then A picks a random key k' and computes y = C(kA,<k' ,"send 

this key to B"» and sends it to the center along with his 

-1 
name. The center computes C (kA,y) = <k' ,"send this key to 

B"> and then computes z = C(kp,<k' ,"this key is from A"» and 

-1 sends this to B. B computes C (kE, z) = <k', "this key is from 

A"> and uses k' in further encrypted communications with A. 

This protocol is simple and requires only conventional en-

cryption functions. Needham and Schroeder [25] and Popek and 
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Kline (27] have defended its use. 

The major vulnerabil ity of this protocol is to both cen

tralized loss of security and centralized loss of function. 

All of the eggs are in a central basket. Theft of the central 

keys, or bribery of personnel at the central site will comprom-

ise all users of the system. Simil arly, destruction of the 

central keys destroys the key distribution mechanism for all 

users. In addition, even though A and B can communicate with 

each other, if either of t.hem is unable to communicate with the 

key distribution center they will not be able to establish a 

secure key. In contrast, public key distribution will be seen 

to continue to function when only two users are left, and only 

the single communication path between them is functional. Pub

lic key systems are much more robust. 

The security and reliability of centralized key distribu

tion can be increased by using two or more centers, each with 

its own keys [6]. Destruction or compromise of a single center 

will not affect the other center. If users always use several 

keys --one from each center-- both to encrypt and decrypt mes

sages, then compromise of a single key (or a single center) has 

no effect on user security. Only if all centers are comprom-

ised is the users' security compromised. In general, any 

number of centers can be established; although practical con

siderations will usually dictate a small number, e.g., two to 

five. 

A system with multiple centers forces each user to estab-
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1ish a key with each center. This increases cost, but also in-

creases security. There are two ways of modeling this increase 

in security. In the first, we argue that the probability of 

compromising one center is p, so the probability of compromis-

k ing k centers is p • If P is reasonably small, this model 

predicts a rapid and dramatic increase in security as the 

number of centers is increased. In the second model we argue 

that if the cost of compromising one center is d dollars, then 

the cost of compromising k centers is only k'd dollars. This 

model predicts only a small increase in security as new centers 

are added. The truth probably lies somewhere in between. 

The centralized key distribution protocol does not fully 

solve the key distribution problem. Some sort of key distribu-

tion method must be used between each user X and the center to 

establish each kX' This problem is nontrivial because no elec-

tronic communications can be used for the transmission of kX' 

and inexpensive physical methods, e.g., registered mail, offer 

only moderate security. The use of couriers is reasonably 

secure, although more expensive. Some implementations of pub-

1ic key distribution protocols do not require a secure channel 

for transmitting individual keys. rather they only require au-

thentication of one (system) key or the root node in a tree au-

thentication system (see sections 5 and 6). 

Centralized key distribution is more vulnerable to both 

loss of security and loss of function than well designed public 

key distribution systems. At the present time, it does provide 
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improved performance because conventional encryption functions 

are more efficient (faster or require less memory) than public 

key functions. In addition, certified conventional encryption 

functions are widely available, but this is not true of public 

key systems. 

change. 

6/4/19 

The latter two situations can be expect.ed to 
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3. Simple Public Key Distribution 

This is the most basic application of public key systems 

[6], [18], [20], [21], [31]. Its purpose is to allow A and B 

to agree on a common key k without any prior secret arrange

ments, even though E overhears all messages. While public key 

distribution systems which are not based on public key cryp

tosystems exist [6], [20], we describe the protocol in terms of 

a public key cryptosystem. A randomly computes enciphering and 

deciphering keys EA and DA, and sends FA to F (and inadvertent

ly E). B picks a random key, k, and transmits EA(k) to A (and 

E). A computes DACEACk)) = k. A then discards both EA and DA, 

and B discards EA. The key in future communications is k. It 

is used to encrypt all further messages using a conventional 

encryption function. Once A and B have finished talking, they 

both discard k. If they later resume the conversation the pro

cess is repeated to agree on a new key k' . 

This protocol is very simple, and has a great deal to 

recommend it. First, no keys and no secret materials exist be

fore A and B start communicating, and nothing is retained after 

they have finished. It is impossible for E to compromise any 

keys either before the conversation takes place, or after it is 

over, for the keys exist only during the conversation. Furth

ermore, if E is passive and does not actively interfere with 

the messages being sent, then E will understand nothing and the 
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conversation will be secure. 

The disadvantage of this protocol is that E might actively 

interfere with the exchange of keys. Worse yet, if E has con

trol of the channel, he can force a known k on both A and E. 

All further messages encrypted with k can then be read by E. 

All E need do is pretend to E that he is A, and pretend to A 

that he is B. To do this, E blocks transmission of EA to E, 

and substitutes EE. B will compute EE(k) and transmit it to A. 

E will block this transmission, learn k by computing DE(EE(k)) 

= k and then send FA(k) to A. A will compute DA(EA(k)) = k as 

usual. E knows k, and both A and B are none the wiser. 

In spite of this disadvantage, the protocol is very useful 

for two reasons. Passive eavesdropping, by itself, is a major 

problem. In "The Codebreakers," the authori tati ve 1164 page 

history of cryptography by David Kahn [12], the threat was from 

passive eavesdropping in the vast majority of cases. Use of a 

simple public key distribution protocol provides protection 

from this attack, and also provides a positive guarantee 

against lost or stolen codebooks, bribery or blackmail of code

clerks, and "practical cryptanalysis" by theft of keys. For 

example, the major vulnerability of the U.S. telephone network 

today is from technically sophisticated passive eavesdropping. 

The Russians use their embassies and consulates in the U.S. to 

house microwave receivers which listen to conversations carried 

between telephone company microwave towers [36], [3]. They are 

not jamming or altering phone calls; just listening. 
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Secondly, if the reader has a preference for any other key 

distribution protocol which does not provide these blanket 

guarantees against lost or stolen keys, then it is simple to 

combine the readers preferred key distribution protocol with 

the simple public key distribution protocol to obtain a hybrid 

which offers the strengths of both. The problem of carelessly 

lost keys, poor key security, theft of keys, and bribery of 

clerks or janitors who have access to the key are not minor, as 

history shows [12 J. A blanket guarantee against all passive 

attacks is extremely comforting. 

When guarantees of authenticity are also required, the 

simple public key distribution protocol can be used together 

with other methods because of the remarkably strong guarantees 

it provides against the passive eavesdropper. Even though a 

"better" method is being used to provide authenticity, its 

security might have been compromised by theft of keys, in which 

case it is impossible to guarantee authenticity, but the simple 

key distribution protocol at least still guarantees secrecy. 
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4. Authenticated Public Key Distribution 

There is a now classic protocol [6] which provides secure 

and authenticated communications between A and B: A and B gen

erate FA and EB and make them public, while keeping DA and DB 

secret. The publ ic enciphering keys of all users are entered 

in a public file, allowing easy and authenticated access to EX 

for any user, X. EX can be authenticated upon entry in the 

file by X making a personal appearance. 

If A and B wish to agree on a common key k, then 

1) A looks up EB in the public file. 

2) A generates k1 randomly and transmits Ep(k1) to P. 

3) B looks up EA in the public file. 

4) B generates k2 randomly and transmits EA(k2) to A. 

5) A computes k = (k1,k2>, where k2 = DA (EA (k2». 
6) B computes k = (k1,k2>, where k1 = DB(E B(k1» . 

At the end of this protocol, A and R have agreed on a com

mon key, k, which is both secret and authenticated. A is as

sured he is talking to B, for only B can decipher EB(k1), while 

B is assured he is talking to A because only A can decipher 

EA(k2). 

This protocol suffers from two weaknesses. First, entries 

in the public file might be altered. F. might create a false 
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entry in A's public file which read: 

B ••••••••••• • EE 

This false entry would let E pretend to A that he was P., to the 

disadvantage of both A and P. 

False entries in the public file can be dealt with both by 

good physical security, or by using new protocols (see sections 

5 and 6) for authenticating the entries in the public file. 

Second, secret deciphering keys can be lost. If E should 

learn DB' then E could masquerade as P to A without altering 

the public file. Unless additional precautions are taken, A 

and B might never find out about the loss. Note that if DB is 

compromised but DA is still secure, then A can no longer be 

sure he is talking to B, but he can be sure he is talking 

secretly to some (unauthenticated) person claiming to be B. 
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5. Public Key Distribution with Certificates 

Kohnfelder [14] suggested that entries in the public file 

can be authenticated by having a Central Authority (CA) sign 

them with DCA. He called such signed entries certificates. 

The certificate for A, called CA, is computed by the central 

authority as: 

while similarly CB is computed as: 

The protocol with certificates is the same as the authen-

ticated protocol, except steps 1 and 3, which involve looking 

up EA and Ep ' are replaced by the steps of obtaining and check

ing the certificates for A and B. The modified protocol is: 

1) A obtains P's certificate (either from a public file, 

or by requesting it from B) and confirms it by com-

puting 

ECA(CB) = "user P",Ep 

2) A generates k1 randomly and transmits EB(k1) to B. 

3) B obtains A's certificate and confirms it by comput-

ing 

E (C) = "user A" E CA A ' A 

4) P generates k2 randomly and transmits EA(k2) to A. 
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5) A computes k = <k 1,k2>, where k2 = DA(EA(k2)). 

6) P computes k = <k 1,k2>, where k1 = DB(Ep.(k1)). 

This protocol assures A and P that each has the other's 

public enciphering key, and not the public enciphering key of 

some imposter. 

The security of this protocol rests on the assumptions 

that DA, DB' and DCA have not been compromised, that A and B 

have correct copies of ECA ' and that the central authority has 

not issued a bad certificate, either deliberately because it 

was untrustworthy, or accidentally because it was t.ricked. 

ECA can be published in newspapers and magazines, and sent 

over all available communication channels. 

correct reception would be very difficult. 

Blocking its 

Securi ty can be improved by having several "Central Au-

thorities," each with its own secret deciphering key. Each 

user would be given a certificate from each authority, all au

thenticating the same public enciphering key. Compromise of a 

single authority will no longer result in compromise of the 

system. 

If only a single "Central Authority" exists, and DCA is 

compromised, then it is no longer possible to authenticate the 

users of the system and their publ ic enciphering keys. The 

certificates are now worthless because the (unauthorized) per

son who has learned DCA can produce false certificates at will. 
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This problem can be greatly reduced by destroying DCA 

after certificates for all users have been created. If DCA no 

longer exists, it cannot be compromised. The central authority 

would create ECA and DCA' sign all the certi ficates, then im

mediately destroy DCA. DCA would be vulnerable only during the 

short time that it was being used to sign certificates. 

While it is now impossible for anyone to falsely add new 

users to the system by creating false certificates, it is also 

impossible to add legitimate users to the system as well. This 

is unacceptable. The simplest way of dealing with this problem 

is for the central authority to issue new certificates with a 

new (different) secret deciphering key. For example, each 

month the central authority could create new certificates for 

that month's new users using a newly created DCA. The new ECA 

would be published, and the new users would be accepted. The 

new DCA would be destroyed after use. 

Al though this method sharply reduces the risk that DCA 

might be compromised, it still leaves open the possibility that 

the central authority might issue bad certificates either by 

intent, or because of some tr ickery during the short period 

when new certificates are actually being signed. These possi

bilities can be effectively eliminated by the next protocol. 
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6. Public Key Distribution with Tree Authentication 

Key distribution with certificates was vulnerable to the 

criticism that DCA can be compromised, resulting in system wide 

loss of authentication (although not necessarily loss of secre

cy). This problem can be solved by using tree authentication, 

as described in Chapter V. 

Again, this protocol attempts to authenticate entries in 

the public file. However, instead of signing each entry in the 

public file, this protocol applies a one way hash function, H, 

to the entire public file. Even though H is applied to the en

tire public file, the output of H is only 100 or 200 bits long. 

The (small) output of H will be called the root, R, of the pub

lic file. If all users of the system know R, then all users 

can authenticate the correctness of the (whole) public file by 

computing R = H(public file). Any attempt to introduce changes 

into the public file will imply with probability near one that 

R ~ H(altered public file), an easily detected fact. 

This method effectively eliminates the possibility of 

compromising DCA because no secret deciphering key exists. 

Anyone can compute R = H(public file), and so confirm that the 

copy of the public file that they have is correct. R, (like 

ECA in the protocol of section 5) can be widely distributed. 

Because correct copies of the public file are widely dis

tributed, it is very easy for a user of the system to discover 
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that someone else is attempting to masquerade as him. If E has 

put the false entry 

A •••••••••••• • EE 

into the public file, then A will discover this fact when he 

looks at hi s own entry. A cannot be given a spec ially "pr int

ed" public file with his entry correct because then H(public 

file) would not equal R. If new public files are issued before 

they go into use, then all users of the system will have time 

to assure that they have been correctly entered into the public 

file. Because the public file will be subjected to the harsh 

glare of public scrutiny, and because making alterations in the 

public file is effectively impossible, a high degree of as

surance that the public file is correct can be attained. 

While this concept is very comforting, forcing each user 

to keep a complete copy of the public file might not be practi

cal. Fortunately , it is possible to selectively authenticate 

individual entries in the public file, without having to know 

the whole public file. This is done by using "tree authentica

tion," described in chapter V. 

The essence of tree authentication is to authenticate the 

entire public file by "divide and conquer." If we define Y = 

public file = Y 1 ' Y2 ' ... y 
n' ( so the ith entry in the public 

file is denoted Yi , and B's entry is YB); we can define 

H(public file) = H(Y) as: 

H(Y) = F( H(first half of r), H(second half of y) 
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Where F is a one way function defined in section 1. 

If A wishes to confirm B's public enciphering key, then A 

need only know the first half of the public file, (which is 

where YB appears) and H(second half of public file) which is 

only 100 bits long. A can compute H(public file) knowing only 

this information, and yet A only knows half the entries in the 

public file. 

In a similar fashion, A does not really need to know all 

of the first half of the public file, for 

H(first half of public file) = 

F( H(first quarter of public file), 

H(second quarter of public file) ) 

All A needs to know is the first quarter of the public file 

(which has YB), and H(second quarter of public file). 

By applying this concept recursively, A can confirm Yp in 

the public file knowing only R, log2 n intermediate H values, 

and YB itself. The information needed to authenticate YB, 

given that R has already been authenticated, lies along the 

path from R to YE• This information will be called the authen

tication path. 

These definitions are illustrated in figure 1, which shows 

the authentication path for Y5• 

This brief sketch of tree authentication should serve to 

convey the idea. For a more detailed discussion the reader is 
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referred to chapter V. 

Using tree authentication, user A has an authentication 

path which can be used to authenticate user A I s publ ic enci

phering key, provided that R has already been authenticated. 

An "authentication path" is a new form of certificate, with ECA 

replaced by R. 

The advantage of tree authentication over certificates is 

that no secret deciphering key DCA exists, so DCA cannot be 

compromised. It is impossible to create false certificates 

after R is computed. 

With tree authentication, it is impossible to have a cen

tralized loss of authentication, but it is also impossible to 

add new users without issuing a new tree. The tree, once com

puted, is fixed and unchanging. Therefore, the public file 

(which is just the leaves of the tree) is also fixed and un

changing. For this reason, it can be carefully and publ icly 

checked for errors. For the same reason, it is impossible to 

update. A new tree must be issued periodically. 

In summary: If tree authentication is used to authenticate 

each entry in the public file, the protocol for public key dis

tribution proceeds as follows: 

1) A obtains B's entry in the public file and B's authen

tication path (either from B or from some convenient 

storage device) and confirms their correctness. 

2) A generates k1 randomly and transmits EB(k1) to B. 
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3) B obtains A's entry in the public file and A's authen-

tication path and confirms their correctness. 

4) B generates k2 randomly and transmits EA(k2) to A. 

5) A computes k = <k,.k2>· where k2 = DA(EA(k2»· 
6) B computes k = <k,.k2>· where k, = DB(EB(k,». 

This protocol can only be compromised if: DA or DB is 

compromised. or if R is not correctly known by A or B. or if 

there is a false and misleading entry in the public file. The 

latter two are easily detectable. If either A or B has the 

wrong R. they will be unable to complete the protocol with any 

other legitimate user who has the correct R. Complete failure 

of the protocol is easily detected. and will lead to some sort 

of corrective action. Implicitly. the correct value of R is 

agreed on by A and B every time each confirms the correctness 

of the other's authentication path. The correct value of R is 

therefore being constantly transmitted between pairs of users 

as they establish keys. This is in addition to other means of 

confirming R. such as publication. 

Because the public file is both open t.o public scrutiny 

and unalterable. false or misleading entries can be rapidly 

detected. In practice. a few users concerned with correctness 

can verify that the public file satisfies some simple global 

properties. i.e •• each user name appears once and only once in 

the entire public file; individual users can then verify that 
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their own entry is correct, and need not bother examining the 

rest of the public file. 

The only practical method of compromising either A's or 

B's security is to compromise DA or DB. A user's security is 

thus dependent on himself and no one else. 

It is still possible for A to claim to be the non-existent 

C. Because C does not exist, he will never object that A is 

masquerading as him. A can effectively establish pseudonyms. 

If it is essential to establish a one to one correspondence 

between named users of the system and real people, some form of 

physical authentication is necessary. In many applications 

there 1s no need to know that user C is really a pseudonym for 

. user A. As long as C pays his bills, his real identity is ir

relevant. The identifier "C" is relative, not absolute, and 

serves simply to tie together a sequence of transactions. 
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7. Digital Signatures 

Diffie and Hellman [6 J suggested the use of publ ic key 

cryptosystems to provide digital signatures, and Rivest, Shamir 

and Adleman [31 J have suggested an attractive implementation. 

Signature techniques based on methods other than public key 

cryptosystems have been suggested by Lamport and Diffie [6 J, 

Rabin [29J, and Merkle [19J. 

Digital signatures, whether based on conventional encryp

tion functions, on public key cryptosystems, on probabilistic 

computations, or on other techniques, share several important 

properties in common. These common properties are best illus

trated by explaining the general concept of a digital signa

ture. 

The now classic example of a digital signature is that of 

a person A who wishes to place a purchase order with his stock 

broker P. A has just received word that the stock will go up 

in value, and wishes to purchase it within a few hours. A, on 

the Riviera, cannot send a written order to B in New York in 

time. All that A can quickly send to P is information, i.e., a 

sequence of bits, but 8 is concerned that A may later disclaim 

the order. A must somehow generate a sequence of bits (a digi

tal signature) which will convince B (and if need be, a judge) 

that A authorized the order. It must be easy for P to validate 

the digital signature, but impossible for him (or anyone other 
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than A) to generate it (to prevent charges that B was dabbling 

in the market illegally with A's money). 

The signature must be a function of both the message and 

the signer, for it must convince R (and a judge) that the par

ticular person, A, has signed the particular message, m. There 

is basically one situation which the digital signature must 

resolve: B claims that A signed a message, and A claims he did 

not. If in fact A signed the message, then he is guil ty of 

disavowal; but if he did not, B is guilty of forgery. To sum

marize: a digital signature should be message dependent, signer 

dependent, easy for the sender to generate, easy for the user 

to validate, but impossible to forge or disavow. 

There are digital signature schemes which do not involve 

public key cryptosystems, and some which involve elaborate in

teractions between A and P, as well as the clever use of random 

information [29J, but it will be convenient notationally to let 

A sign message m by computing the signature, DA(m). Checking a 

signature will then be done by checking that m = EA(DA(m)). If 

EA(DA(m)) produces an illegible message (random bits) then the 

signature is rej ected as inval id. This notation is somewhat 

misleading because the actual method of generating and validat

ing signatures can be very different from this model. This no

tation is retained because it is widely known and because we 

will not discuss the differences among different digital signa-

ture methods, only their common properties. The conclusions 

reached in the following paragraphs apply to both public key 
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andnon-pub11c key based signature systems. 
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8. ! Simple Digital Signature Protocol 

The first digital signature protocol, proposed in [6], 

proceeded as follows: 

A and B agree on message m that A is to sign. A computes 

DA(m) (where DA is known only to A) and transmits it to P. B 

looks up EA in the public file. B can now check DA(m) by com

puting EA (D A (m» and confirming that it equals m. B retains 

DA(m) as proof that A signed message m. 

If A later denies having signed message m, P can give 

DA(m) to a judge, who can easily compute EA(DA(m» = m, proving 

that A signed the message. 

This protocol has been criticized [32J, [27J on two 

grounds. 

First, the public file might have been tampered with. 

When B looks up EA in the public file, E might have altered the 

public file so that EE appears next to A's name. B will then 

"check" a signature with the wrong public enciphering key, mak

ing B's "check" useless. ~ethods of authenticating the public 

file, discussed previously under key distribution protocols, 

minimize this problem. 

A second criticism, raised by Saltzer [32J and by Popek 

and Kline [27J, is that A can disavow the signed message, ex

plaining "E has stolen DA, and has posted it in a public place. 

Clearly, anyone could have computed DA (m), so it proves noth

ing." In fact, E did not steal anything; A posted DA in a pub-
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lic place himself. 

signed. 

A can now disavow any message he ever 

Although this simple protocol is flawed, it should be com

pared with current practice. At the moment, it is possible to 

order goods and services simply by giving a valid credit card 

number and nothing else. 

Further, A cannot disavow a signed message without gen-

erating suspicion. Repeated disavowals would be especially 

questioned. In an actual system, the incidence of disavowal 

will be low, which implies that careful investigation of those 

cases that do occur is possible. 

A simple solution to the disavowal problem is to adopt 

very good physical security for DA, and then refuse to accept 

A's claim that DA was compromised. Several factors combine to 

allow extraordinarily good physical security for DA• First, 

destruction of DA is merely inconvenient. A can always gen

erate a new D'A and E'A. If theft of DA is imminent, A can 

destroy DA• Contracts signed with DA are still val id and EA 

still exists to authenticate them, even though DA has been des

troyed. 

Second, only a single copy of DA need exist. Because des

truction of DA is only inconvenient, backup copies of DA need 

not be kept. DA could be kept in a small strong box or on a 

single chip of silicon in a "signet ring" worn by A. Attempts 

to open the ring would cause destruction of DA• 

To summarize, the simple signature protocol is a great im-
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provement over the current situation (no signature protocol), 

but it suffers from three problems: the public file that B 

checks must be accurate; A might disavow the resulting signa

ture, explaining (falsely) that DA was stolen; and DA might ac

tually be stolen by E who can then impersonate A. 

Authenticating the entries in the public file was con

sidered under public key distribution protocols. 

Physical security of DA is A's responsibility. 

Disavowal is considered further in section 9. 
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9. Dealing with Disavowal 

If it is necessary to assume that DA can be compromised, 

then several protocols which reduce or mitigate the problem of 

disavowal suggest themselves. 

One solution is to have a witness testify to the time of 

the order only. Essentially, this reduces the role of the wit

ness to that of a reliable time stamp. As mentioned before, if 

a message was signed prior to the time the key was compromised, 

then it must be val id • The wi tness signs a statement of the 

format "The time is now 12:04:23 on the 17th of March, 1979, 

and I have been presented with the following bit pattern 

xxxxxxxxxxxxxxxxxxxxx." If the witness' signature is still 

valid, and the witness signed the statement prior to the time 

DA was compromised, then the witnessed signature must also be 

valid. The witness need not physically authenticate A's agree

ment; the wi tness does not care where the bit pat tern comes 

from nor what it means. 

If A claims he lost DA yesterday, then a message signed 

three months ago and "time stamped" by a witness two months ago 

is still valid. Only A's recently signed messages are open to 

question. 

A can still disavow a message signed at 2:00 explaining 

that his signature was compromised at 1: 00 but that he d idn' t 

notice this fact until 3: 00. If A's argument that DA was 
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compromised and he failed to notice this for two hours is ac

cepted, then he can disavow a signed message. Since the "bene

fit" of most disavowals (e.g. stock orders) is not realized un

til a significant time after the message is sent, time stamping 

is more valuable than might first appear. 

If there is a witness who is trusted not to disavow his 

signature, why not rely on him entirely, and eliminate A's di-

gital signature completely? The witness' testimony that A 

agreed to the contract would BE the "signature." If the witness 

is fully trusted, he need not even use digital signatures. He 

could simply remember the contracts. In the event of dispute, 

the witness would simply look up the appropriate contract, and 

all parties to the dispute would abide by that version. (Popek 

and Kline [27] advocate the use of such methods.) 

The primary disadvantage to this al ternative is that A 

loses control over his signing ability. The witness can now 

forge A's "signature" on a contract, either because the witness 

is mal icious, or because the witness made a mistake. If the 

witness' word is accepted as binding, A would have no recourse. 

Even though A swore that he had not seen the contract, had not 

agreed to the contract, and would never have agreed to the con

tract, if the "signature" provided by the witness is to be use

ful, A's pleas must be ignored. In contrast, if the witness 

only countersigns A's digital signature, then A is guaranteed 

that forgery is impossible so long as DA is secure. 

In addition, if A is in San Francisco, B is in New York, 
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and the witness is in Philadelphia, then some form of secure 

communications between the various sites is required. 

adds additional points of vulnerability to the system. 

This 

Finally, if the witness is responsible for many contracts 

worth many millions of dollars, it is an attractive target for 

system penetrators and vandals. By contrast, digital signa

tures are distributed; there is no central site whose destruc

tion or compromise would invalidate all signatures for all 

users. 

Disavowal is an inherent property of any signature tech

nique, including written signatures, stamps, seals, etc. For 

any signature system, the signer can try to disavow his signa-

. ture by creating a fanciful but not impossible scenario which 

would have allowed someone else to have forged the signature. 

The essential question is the plausibility of these scenarios. 

As their plausibility is reduced, the risk of disavowal is also 

reduced. To be practical, a signature system must reduce the 

risk of disavowal to a level which is tolerable for the partic

ular application. Complete elimination of all risk does not 

appear to be attainable in practice. 
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10. Conclusions 

The primary purpose of this chapter has been to increase 

the readers insight into the strengths and weaknesses not only 

of the particular protocols described, but also of cryptograph

ic protocols in general. Certainly, these are not the only 

cryptographic protocols possible. However, these protocols are 

valuable tools to the system designer: they illustrate what 

can be achieved and provide feasible solutions to some problems 

of recurring interest. 

6/4/79 Chapter IX Page 141 



X. ON THE SECURITY OF ~ULTIPLE ENCRYPTION 

Diffie and Hellman [5 J have argued that the 56-bit key 

used in the Federal Data Encryption Standard (DES) [24J is too 

small and that current technology allows an exhaustive search 

56 of the 2 keys. Although there is controversy surround ing 

this issue [9,15,34,23,40,2J, there is almost universal agree-

ment [37,5) that multiple encryption using independent keys can 

increase the strength of DES. But, as noted in [5 J, the in-

crease in security can be far less than might first appear. 

This chapter shows that a recently proposed scheme [37J for 

multiple encryption suffers from such a weakness. 

The simplest approach to increasing the key size is to en-

crypt twice, with two independent keys K1 and K2. Letting P be 

a 64 bit plaintext, C a 64 bit ciphertext, and K a 56 bit key, 

the basic DES encryption operation can be represented as 

(10.1) 

and simple double encryption is obtained as 

(10.2) 

While exhaustive search over all 2112 keys ((K1,K2) 

.) . 2112 t· d ill . f . bl th· palrs requlres opera lons an s c ear y ln eaSl e, lS 

cipher can be broken under a known plaintext attack (where 

corresponding plaintext and ciphertext are both known) with 256 

operations [5J, and 256 words of memory. The complexity, meas-
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ured as time plus memory is therefore no greater than is needed 

to cryptanalyze a single 56 bit key exhaustively. (Though the 

cost is somewhat higher since memory is "more expensive" than 

time.) If P and C represent a known plaintext-ciphertext pa ir, 

then the algorithm for accomplishing this (5] encrypts P under 

all 256 possible values of K1, decrypts C under all 256 values 

of K2 and looks for a match. For obvious reasons this is 

called a "meet in the middle" attack and is given in detail by 

the following algorithm (Where n is the number of keys in the 

key space. For DES, n = 256 ): 

1.) For i = 1 to n Do 

a.) Table(i] = <Si(p),i,"encrypt"> 

-1 b.) Table(n+iJ = <Si (C),i,"decrypt"> 

2.) Sort the table on the first field. 

3.) Search the table for adjacent entries of the form 

6/4/79 

<value,K1,"encrypt"> 

<value,K2,"decrypt"> 

and test to see if K1 and K2 are the correct keys by 

encrypting further plaintext-ciphertext pairs. Based 

on unicity distance arguments (30,35], there will be 

about 248 "false alarms" for I<'1 and K2 if a single 

plaintext-ciphertext pair is used. Testing these 

takes less than 256 operations and therefore contri-

butes an unimportant overhead to the computation. 
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While the algorithm given runs in time n log n, it could 

be rewritten using hash tabl es to run in essentially linear 

time. In any event, the present analysis wi1l neglect loga-

rithmic factors. 

The use of double encryption provides some increase in 

. t b th 1 . th f t'· . 256 securl y ecause e a gorl m or cryp ana_ysIs requIres 

d f as well as 256 wor s 0 mf'mory, operations. The cost of a 

machine to perform 256 operations in approximately a day has 

been estimated by Diffie and Hellman [5] to be about 20 million 

dollars. The cost of 256 64-bit words of memory on 6250 cpi 

reels of magnetic tape, assuming 2400 foot reels that cost $15 

dollars each, is about 60 billion dollars. 

While the cost of implementing this search is high enough 

to discourage its use today, the danger of cheaper technology 

or shortcuts [9] in the future prompted Diffie and He1lman to 

suggest triple encryption with three independent keys K1, K2 

and K3. A generalized meet in the middle attack would then re

quire 2112 operations and be well beyond the foreseeable tech-

nology for at least 50 years, and possibly forever. 

At the 1978 National Computer Conference, Tuchman [37] 

proposed a triple encryption method which uses only two keys K1 

and K2. The plaintext is encrypted with K1. decrypted with K2, 

then again encrypted with K1 so that: 
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This method seems to avoid the "meet in the middle" attack 

outlined above and is upwardly compatible with a single encryp-

tion by setting K1 = K2 to produce: 

(10.4) 

This allows users of the new (two key) system to decrypt 

data encrypted by users of the old (single key) system. 

Although the encryption technique (10.3) provides more 

security than simple double encryption as in (10.2), it is 

shown below that the new method can be cryptanal yzed using a 

chosen plaintext attack [6J in about 256 operations. We there-

fore recommend that if triple encryption is used, there be 

three independent keys. If compatibil ity with single encryp-

tion is desired, the operation can be taken to be: 

-1 
C = SK1£SK2[SK3(P)J} (10.5) 

Then when K1 = K2 = K3 = K, C = SK(P). Users could al so be 

compatible with Tuchman's suggested two key method by taking K1 

= K3. 

Although chosen plaintext attacks can sometimes be mounted 

on real systems, the following should be viewed as a "certifi-

cational attack" which is only indicative of a weakness. His-

tory, littered with the broken remains of "unbreakable" ci-

phers, teaches extreme caution in certifying a new one [12J, so 

that today even an indication of weakness is regarded as 

dangerous. In many cases, ciphers which have yielded to chosen 
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plaintext attacks have later proven vulnerable to known plain-

text or ciphertext only attacks as well. 

We define some useful notation before describing the 

method of cryptanalysis: 

C = Enc(P) = -1 
SK1 {SK2[SK1 (P)]} (10.6) 

M1 = SK1 (P) (10.7) 

-1 (10.8) M2 = SK2(M1) 

-1 (10.9) = SK2 (SK1 (P» 

-1 (10.10) = SK1(C) 

M1 and M2 are intermediate values in the computation of C from 

. P. 

We can motivate the method of cryptanalysis with the fol-

lowing observations: 

If we knew K1 and a (P, C) pair, then it would be possible 

to compute the intermediate values M1 and M2 from (10.7) and 

(10.10). This would let us mount a known plaintext attack on 

K2 using (10.8). There are 256 values of K1, so if we could 

quickly determine the right K2 once we found the rigbt K1, then 

cryptanalysis would only take 256 operations. Determining K2 

using a known plaintext attack requires 256 operations, which 

is too long. 

The trick is to somehow change the known plaintext attack 

on K2 to a chosen plaintext at tack (that is, M1 is chosen in 

(10.8); for example, M1 = Q), so we can quickly solve for K2 
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with a table lookup. This increases the memory needed to 256 

words, the same as is needed by the meet in the middle attack 

for simple double encryption. 

For this attack to work, we must find the value of P such 

that M1 = SK1(P) = Q. If we knew the right K1, then we could 

-1 easily compute P = SK1(Q) from(10.7), and cryptanalyze the sys-

tem in one step, because we could then request EncCP) = C, (by 

-1 the chosen plaintext assumption); compute SK1(C) = M2; and com-

pute K2 in one step from ~2 using the precomputed table. 

Since we do not know K1, we repeat this process for each 

of its 256 possible values and test any resulting (K1,K2) pairs 

to see which one is correct. Again using unicity distance ar-

48 . guments, we expect 2 false alarms, which is small compared 

with 256. 

-1 Because P = SK1(Q) from (10.7) and M2 = -1 SK1 (Q) from (10.8) 

the algorithm can proceed as follows: 

1.) For i = 1 to n Do 

.... -1 
a.) M2 = Si (Q) 

b.) Table[ iJ = <M2, i, "2"> 

" -1 -1 c.) M2 = S. (EncCS i (0») 
1 -

d.) Table[n+iJ = <M2 ,i,"1"> 

2.) Sort the table on the first field. 

3.) Search the table for adjacent entries of the form 

<value ,K2, "2"> 

<value,K1,"1"> 
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and test to see if K1 and K2 are the correct keys by 

checking further plaintext-ciphertext pairs. 

Step 3 is guaranteed to find the correct (K1,K2) pair. 
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Conclusion 

Two methods of multiple encryption have been shown to be 

less secure than they first appeared. The weakness in both 

cases came from an ability to separate the key into two halves 

which did not interact. We conclude that all bits of the key 

should come into play repeatedly in a complex fashion as they 

do in the 56-bit DES, and that multiple encryption with any 

cryptographic system is 1 iable to be much less secure than a 

system designed originally for the longer key. 
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XI. CONCLUSION 

The use of cryptography is growing because of the increas

ing demand for privacy as reflected in new legislation, the 

need to protect vulnerable electronic funds transfer systems, 

the increasing quantity and value of information sent over 

vulnerable communication channels, the dropping price of eaves

dropping and analyzing information, and the dropping price of 

protecting information via encryption. 

Although it is difficult to predict the curves and swerves 

of a new and rapidly developing technology, it appears that 

many of the techniques described in this thesis will be used in 

telecommunication systems that span the globe to protect the 

privacy and integrity of communications of all kinds. 
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XIII. ROUTINES TO GENERATE TRAPDOOR KNAPSACKS 

1* 

General Comments: 

The following routines have been written in PC, a 

simplified version of C that does indefinite precision 

integer arithmetic. BC runs on a PDP-11 under the Unix 

operating system. 

BC has a few peculiar conventions as follows: 

% The infix mod operator. w'Xm computes w modulo m. 

auto A local variable declaration. 

++ The unary increment-by-one operator. As a 

postfix operator, it first returns the value 

of a variable, then increments it. As a prefix 

operator, it increments a variable and returns 

the incremented value. 

Same as ++, only it decrements. 

!= The relational not-equal operator. 0!=1 is true, 

but O!=O is false. 

" " 
The relational equal operator: 0==0 is true. 

The indicated string is printed, no print or output 

statement is needed. 

exp A naked expression is printed. The statement 

6/4/79 

" i = ";i 

when i has value 845 will print 

i = 845 

To prevent unwanted printout of integer values 

from function calls, the construct 

f=f(a,b,c) 
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will often appear, where f is a dummy variable 

which is discarded 

[] Left and right braces cannot appear in comments or 

in quotes (a bug) so all comments and quotes use 

( and ) for array subscripts. 

The semicolon is optional at the end of a line. 

if(O==O) statement; The statement is executed. This 

redundant construct is required because of 

bugs in BC. 

This file contains all routines necessary to 

generate trapdoor knapsacks, EXCEPT the 

routine r(l,h), used to generate a random number 

in the range from 1 (low) to h (high). That 

is, rO,h) is a random number satisfying 

1 < rO ,h) <h 

The main routine is m:make. Once called, it calls upon 

other routines, as needed, to generate the trapdoor knapsack. 

define m(m,n,r,g,b){ 

auto i,e,t 

1* m:make makes the enciphering and deciphering 

6/4/79 

keys for the iterated generalized knapsack method. 

The input parameters have the following meanings: 

m: The size in bits of m(1), the first modulus. 

n: The number of integers in the generalized 
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trapdoor knapsack. 

r: the repetition count, i • e. , how many iterations. 

g: The growth rate, in bits/iteration. 

b: The bound on the x( 1): o < xCi) < b. 

Print out the arguments: *1 

if( 1 ==1) " 

The arguments m,n,r,g,b to m:make were: 

" 
m 

n 

r 

g 

·b 

1* 

*1 

We compare the "natural" growth rate 

with the growth rate g. If the natural growth rate 

exceeds the growth rate g, then we assume that the 

natural growth rate is desired. 

g=2"g 

t= (b-1 )*n 

jf(g<t) g=t 

1* e determines how many multiples of m(i) can be 

added to the a(i) *1 

e=g/t-1 

if(O==O) " 
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The value of e is: ";e 

1* now we generate m( 1 ) and w( 1) *1 

m[ 1 ] = r(2"(m-1),2"m) 

w[ 1] = r(1,m[1 ]) 

1* Now to make sure gcd(w(1),m(1» = *1 

t = g (w[ 1 ], m [ 1 ]) 

while(t!=1) { w[1] = w[1]/t; t=g(w[1],m[1])} 

1[1] = i(w[1],m[1]) 

1* now we generate the a' vector 

(the value of c is discarded) *1 

c=c(w[1 ],m[1 ],b,n) 

1* copy it for safekeeping *1 

for(i=1;i<=n;i++) p[i]=a[i] 

" basis generated 

" 
1* now to generate the rest of the wand m vectors *1 

for(i=2;i<=r;i++) { 

i 

m[i] = rCg*m[i-1],2*g*m[i-1]) 

w[i] = r(1,m[i]) 

1* Make sure gcd(w(i),m(i»=1 *1 

t = gCw[iJ,m[ i]) 

while(t!=1) { w[i]=w[i]/t; t=g(w[i],m[i.])} 

1* and compute the inverse of w modulo m *1 

i[i] = i(w[i],m[i]) 

} 

1* Now we can generate the public enciphering vector *1 

for(i=1;i<=n;i++) forCj=1;j<=r;j++) { 
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a[i]=a[i]*i[j]%m[j]+r(O,e)*m[j] 

" Mark! " 

} 

1* And print the public enciphering vector *1 

if{O==O) " The public enciphering vector is: 

" 
p(a[],n) 

1* print the simple knapsack vector *1 

if{O==O) " 

The simple (secret) knapsack vector is: 

" 
p(p[],n) 

if{O==O) " The w vector is: 

" 
p(w[],r) 

if (0==0) " The m vector is: 

" 
p{m[],r) 

if{O==O) " The i (inverse of w) vector is: 

" 
p( H J,r) 

return(O) 

} 

" just passed m:make 

" 
define i( a, b){ 
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auto j,i,m,t 

/* This routine computes a inverse mod b 

i= 1 

j=O 

m=b 

while(O==O){ 

t=b/a 

j=j-t*i 

b=b-t*a 

if(b==O) if (a!=1) " in i: invert. 

" 
if(b==O) return(i) 

t=a/b 

i= i-t* j 

a=a-t*b 

if( a==O) if (b! = 1) "in 

" 
if(a==O) return(j+m) 

} 

} 

" just passed i:invert 

" 
define g(a,b){ 

auto i,j,k 

i: invert. 

/* computes the gcd of a and b */ 

while(O==O){ 

a=a%b 

if(a==O) return(b) 

b=b%a 

*/ 

gcd 

gcd 

6/4/79 Chapter XIII Page 162 

is not 

is not 

1 

1 
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" 
" 
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if(b==O) return(a) 

} 

just passed g:gcd 

define c(w,m,b,n){ 

auto k,j,x,y 

1* c:create creates the n numbers involved in the simple 

generalized knapsack vector. 0< xCi) < b. 

. *1 

} 

" 
" 

Note that the array a really represents 

the a' vector. 

Note that summation over n of (b-1)*a(i) is bounded by m, 

and that the a(i) satisfy a(i) > (b-1) * summation a(j) 

for j<i. 

k = m 1 b .... n 

for(j=1;j<=n;j++){ 

a[j] = r«b .... (j-1)-1)*k+1,b .... (j-1)*k) 

} 

return(O) 

just passed c:create 

define p(a[],n){ 

auto i 

1* p:print prints Qut an array *1 

for(i=1;i<=n;1++) a[i] 

return() 
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} 

" just passed p:print 

" 
1* The calling sequence: global parameters are initialized, 

and the main routine, m, is called. 

The "?" is an input statement * 1 

m=? 

n=? 

r=? 

g=? 

b=? 

m(m,n,r,g,b) 
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XIV. EXAMPLES OF TRAPDOOR KNAPSACKS 

1. Introduction 

This appendix gives some example trapdoor knapsacks. The 

author has retained the secret deciphering keys, and the reader 

is challenged to break any of them. They are of marginal 

strength to encourage attempts to break them. Full documenta

tion, including listings of all relevant programs and the enci

phering key, are given. 

2. Description 

The reader is assumed to be familiar with [6]. Most of 

the notation and all of the concepts that follow are described 

there. 

The program which generates trapdoor knapsack vectors has 

five input parameters, as well as a source of random integers. 

The random numbers are provided by a subroutine. This subrou

tine, r(l,h), accepts two arguments: a lower limit and an upper 

limit. It returns a random integer in the range from the lower 

limit to the upper limit (inclusive). 

The five parameters describe: 

1) n: The number of integers in the knapsack. 

2) b: The range of the x[i]. 0 < x[i] < b. 

3) r: The number of iterations. 

~) g: The "growth" of the m vector per iteration in bits. 
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(That is, m[i] is about 2g ·m[i-1]). 

5) m: The size of m[1], the first modulus. (Note that m, 

as used in this context, is NOT the same as m 

described in [1]. The m vector is the natural 

generalization of m in [1].) 

The reader can check his understanding of the parameters 

n, b, and r by examining the following program segment. If we 

let the a' vector be the easy to solve (secret) knapsack vec

tor, and a be the publicly known knapsack vector, then the rou

tine for decoding s, the weighted sum of the integers in the a 

vector (s = x dot a) is: 

For j = r downto 1 do s = s*w[j] mod m[j]; 

For j = n downto 1 do 

Begin 

x[j]=s/a'[j]; 

End 

if(x[j]>=b) print(" Error: x[j] larger than b"); 

s=s-x[j]*a'[j]; 

Note that the first For statement converts s from the dif

ficult to solve knapsack problem to the easy to solve knapsack 

problem. The vectors wand m are just the generalizations of 
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the integers wand m used in the single iteration knapsack. 

The second For statement decodes s into a weighted sum of 

the a'[i]. 

The parameters g and m are used to define the size of the 

integers in the knapsack problem. In particular, m gives the 

size in bits of m[1J, while g gives the "growth rate", Le., 

the increase in the size between m[i] and m[i+1]. These two 

parameters, taken together, define the size of m[i] for all i. 

Knapsacks with the following parameters have been gen

erated: 

6/4179 

m 

300 

300 

300 

550 

n 

20 

6 

r 

6 

2 

g 

30 

30 

b 

2"10 

2"30 

20 2"10 

4 2"100 
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3. THE PUBLIC ENCIPHERING KEYS 

The following section has the output of the trapdoor knap

sack generating function. The output has been edited both for 

clarity and to delete the secret deciphering keys. The digits 

in the secret deciphering keys have been replaced with X's, 

thus clearly showing the size of these numbers but concealing 

their exact values. 

Numbers which require more than one line are extended us

ing "\" at the end of the line. 
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The arguments m,n,r,g,b to m:make were: 

300 

20 

o 

1024 

The value of e is: 0 

The public enciphering vector is: 

15129608995554448265183294801259173700777693742504245849293517\ 

00743775970020807652616728474 

. 17524932983557645722760284190473882583927059421015819376353932\ 

5799065041428006760782725691 

17225937970747338687231551661572161286297722869710199263697080\ 

7820958655976133279487750620 

91488866379290109557739402894698211130838391427430023781525692\ 

3811073379658376192168379165 

94262820794253890320443933071875869795625142774573849428509608\ 

650456231106385706727836631 

11388384681036095320536124150646919167647675890919002134429991\ 

63493020581846432447173678482 

17164561490371563702262183773738261525487190864260252517798872\ 

77213395347497006724623499765 

86517801731770532543741885456541883058148324212404989101077399\ 

8735545819677701380449301433 
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11918610102945650340311160161650311523832811383399928255062558\ 

02514510029525184748851751894 

10186511811912590244551480266112526423081912035430233837583568\ 

28199528366796096978741582414 

88132900511530210932431198840838038423113420192104681140079893\ 

1596001610428439534682519121 

11271491248094114240428639166896531852810916694253901676788123\ 

04015415567501129115853489561 

12085311314318150243424363543606231831199901981114062610222009\ 

15669311895163002094289286961 

14485430922501364435992263112363565292151305951945041835388146\ 

69771715706518806175445236680 

. 18881261711072427885226330073913600056141964754750810684880976\ 

69208294411355621724461161591 

18840689204755897531138630187418592655100273389883361028261623\ 

8323731921940674944071511959 

53196909860835203432715212539792034763303370601440944113970149\ 

6134355179709669756985245364 

17508960079759190905452196910562315702874340626629585921387736\ 

53520312052499979153941352119 

75110242518324020050071796663749928678824337103158621132808528\ 

834253104532129465889505610 

18633041196220983043158614594316710432541253309650075539934535\ 

52119983887566281548150010461 

The simple (secret) knapsack vector is: 
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XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

. XX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 
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XXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXX 

The w vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

The m vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

The i (inverse of w) vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXX 
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The arguments m,n,r,g,b to m:make were: 

550 

4 

1 

30 

1267650600228229401496703205376 

The value of e is: 0 

The public enciphering vector is: 

66548921643195336226466738477434229959192804189375188792173517\ 

98204581021406969103971543806570426505592910710830964580119256\ 

. 57074465022305714593614695666457981294232 

11684898605722586318894226889837168088364682651279852730837157\ 

59301391908196763856942352126002186651785657829322167674672214\ 

87936298749063963446686191605473239307527 

28673911921164002303992927072837051623067378006874600205947505\ 

33516592506537471315024349010350090619979216651185755427174124\ 

601708976690831746874800531778679894464877 

10698579696822998161535367373067222285227832403890470260459712\ 

75683530572527154813286992913241349008324990670208801873643214\ 

620092254448548529952897080766929088669071 

The simple (secret) knapsack vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 
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XXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXX 

The w vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

The m vector is: 

. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

The i (inverse of w) vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
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The arguments m,n,r,g,b to m:make were: 

300 

6 

2 

30 

1073741824 

The value of e is: 0 

The public enciphering vector is: 

13132235906108717392663365023635308161076002659005223324995682\ 

25757599936500808339254694610635045146 

. 12528488195733656928466152676882523900185516876324287298619131\ 

380586309946524954009856518314444714159 

98959536571058166688252421388712784824420035528572633604543631\ 

48601662744714607478456499807853916200 

12178246401570249356105744244631115771305946255369054130689551\ 

725925672696713096799262325240902054193 

13359484996590370029702383299514807005137667883850037475621696\ 

084206987776300260651262919761676285651 

10605380625130962048597032199209554360229746160482647791377347\ 

415113739429281225862963632868189331960 

The simple (secret) knapsack vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

6/4/79 Chapter XIV Page 175 



EXAMPLES OF TRAPDOOR KNAPSACKS 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXX 

The w vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

The m vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

The i (inverse of w) vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
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The arguments m,n,r,g,b to m:make were: 

300 

20 

6 

30 

1024 

The value of e is: 52479 

The public enciphering vector is: 

38715730992554486121272405707302308900190254362381098248854037\ 

02039089147774642182302678634059272748460321670522654185789046\ 

. 69317062601758874 

45963481413062270897336980471131787803479816837563704871634929\ 

64412545824400034470141207481925514558064955814501581390649868\ 

25526460022708092 

47379305802924677405559984916424427031739779129707090405682403\ 

71910070469798171108869279088831676924440803743504418976009529\ 

4154941724990513 

84147494179172295428375031758012898740442809371305937121065706\ 

84577751060823914277922629647522204684617711533895415516215144\ 

0356446225485422 

35547604501964494370572010230613962827803372039718656497738549\ 

70511639432408234857437415904856467426298605828569125571658631\ 

23689858301771567 

26327874002151723192221794869064497756424507919872393125373781\ 
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23867772453949577638673204672488027113486979841148992157446034\ 

95311577477033299 

44137427640458270099948143106280924336347013911498245284167859\ 

96607761771476233994006770106080475456661015482830880038635956\ 

18128469849886865 

82869734506728408857670646187367840701450363010442084975363677\ 

76927489127818427124735230413757953097918761358229919317923335\ 

3546850589724563 

14435783033057224190224067526217500711045449689908289174307459\ 

73420352036464461078659313878916939486093236699367612785917679\ 

78264370706748596 

76219518479176804330617483693702169070570461167513995951771603\ 

. 15437650600544017420217970789135573545530048922944206333030398\ 

0826452486752343 

39057907333091628756443751313956792336454871430361636888411903\ 

66734535303428276644443984266324863268312425515094793334960194\ 

96299472093280176 

33713269934573232136020826742991836655590472158848681940828486\ 

25686782702318796654172703957782207550398421357982260463217571\ 

00121265799943710 

69921134220631872208059007887490035018668902960747850777141543\ 

19049543017365942287891801006275473440066900746652591567349236\ 

8805266202636565 

51196238094281378251652093753017210817286419746759610742659928\ 

94616199507515513250496229763102416668715378488669390981450426\ 

56875350837400915 
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44724883620928222090784519562821837484590672358050427322934764\ 

97494151350493273373028039004676025506580949966000913729267884\ 

31749339300260941 

85206344330067581086837330930667257383968038059247870726076869\ 

07880727801972856294928972164592767702534838364099275193529311\ 

43754226678945 

38970025165685322293070154507730744153272694441127356546088301\ 

19043923071104022138625700393102913674285153293383917226363619\ 

26355581688896977 

35735016141627835378596877196728868785145457355564120606595359\ 

93993394406622491144746236939321856430045889991927582914696631\ 

91555560301521980 

. 23750606001016588281369991225133189815540183312165150355918705\ 

14360762678975349752670346674852363030135963548192317645214176\ 

45809506052808766 

12811316661104085102673572902768673537492304808275616527342662\ 

60692973884603159029815008726045088971127956724223143319836701\ 

11913499359574243 

o 

The simple (secret) knapsack vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
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XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXX 

. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXX 

The w vector is: 
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XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXX 

The m vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 
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xxx 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXX 

The i (inverse of w) vector is: 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ 

XXXXXXXXX 
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