
I NFORMAT I ON SYSTEMS LABORATORY

STANFORD ElECTRONICS LABORATORIES
DEPARTMENT OF ElECTRICAL ENGINEERING

STANFORD UNIVERSITY' STANFORD, CA 94305

SECRECY, AUTHENTICATION, AND

PUBLIC KEY SYSTEMS

By

Ralph Charles Merkle

June 1979

Technical Report No. 1979-1

This work was supported by the National Science Foundation
under grant ENG-IOI73; the U.S. Air Force Office of
Scientific Research under contract F49620-78-C-0086; and the
U.S. Army Research Office under contract DAAG29-78-C-0036.

·
SEL 79-017

SECRECY, AUTHENTICATION, AND PUBLIC KEY SYSTEMS

By

Ralph Charles ~erkle

June 1979

Technical Report No. 1979-1

This work was supported by the National Science Foundation under
grant ENG-10173; the U.S. Air Force Office of Scientific Research
under contract F49620-78-C-0086; and the U.S. Army Research Of
fice under contract DAAG29-78-C-0036.

o Copyright 1919

by

Ralph Charles Yerkle

ii

ACKNOWLEDGEMENTS

It is the author's great pleasure to acknowledgp the aid,

the help, the assistance, and the support of: my fellow gradu

ate students, Steve Pohlig, Raynold Kahn, Dov Andleman, and

Justin Reyneri; Bob Fabry and Jim Reeds on the faculty at U.C.

Berkeley; the independent and imaginative ~~it Diffie; the ever

helpful Charlotte Coe; my fellow Berkeley students Peter Blat

man, Bruce Englar, Frank Olken, and Loren Kohnfelder; the love

and support of Carol Shaw; and my mother, who knew I could do

it all along.

I would like to give my special thanks to Martin Hellman,

whose support made it possible and who encouraged me when it

counted most: when little was known and much was doubted.

Thanks are also due to the National Science Foundation for

it's support. of the work described in chapter's III, IV, VI,

VII, VIII, IX and X under grant ENG-10173; and t.o the U.S. Air

Force Office of Scientific Research and the U.S. Army Research

Office for their support of the work described in chapters II,

V and VII under contracts F49620-78-C-0086 and DAAG29-78-C-

0036.

6/4/79 iv

Table of Contents

I. Introduction 1

II. One Way Hash Functions ••••••••••••••••••••• 11

III. A Public Key Cryptosystem Using Puzzles •••• 16

IV. Public Key Distribution Using Puzzles •••••• 21

V. A Certified Digital Signature •••••••••••••• 32

VI. The Trapdoor Knapsack •••••••••••••••••••••• 62

VII. How Secure is the Trapdoor Knapsack? •••••• 82

VIII. An NP-complete Conventional Cipher •••••••• 105

IX. Protocols for Public Key Cryptosystems •••• 112

X. On the Security of Multiple Encryption •••• 142

XI. Conclusions ••••••••••••••••••••••••••••••• 150

XII. Bibliography ••••••••••••••••••• ~ •••••••••• 151

APPENDICES

XIII. FC Code to Generate Trapdoor Knapsacks •••• 157

XIV. Examples of Trapdoor Knapsacks •••••••••••• 165

v

I. INTRODUCTION

1. Introduction

Cryptography is a fascinating subject, even more so today

than in the past. The new and once unthinkable ideas of public

key distribution and digital signatures have opened up new

fields of research, and new possibilities for the marketplace.

To be one of the first to venture into this virgin territory

has been a great privilege.

This thesis presents the findings of work done between

fall of 1974 and spring of 1979.

Chapters III and IV describing the "puzzle" methods are

now primarily of pedagogical and historical interest: they

were the first. break in what at that time appeared to be a

smooth and solid wall.

Chapter VI, on the trapdoor knapsack, describes the second

real breakthrough, (the first was the key distribution method

based on exponentiation developed by Hellman) and represents

work done in the summer of 1976.

Chapter V, on a certified digital signature, was conceived

in the summer of 1977. To some extent it represents frustra

tion over the difficulties of extracting signatures in a clean

and reliable way from the trapdoor knapsack.

Chapter VII is a follow up on chapter VI. It attempts to

provide reasons for believing that the trapdoor knapsack is ac

tually secure. The author is, of course, quite convinced it is

6/4/79 Chapter I Page 1

INTRODUCTION

secure; but inventors have traditionally been blind to the

weaknesses and obvious faults of their cryptographic inven

tions. It has therefore been very encouraging to hear from

others that they have failed miserably in attempts to analyze

it.

Chapter IX on protocols provides insight into the problems

and techniques of actually using pubJic key systems.

Chapter VIII describes an essentially NP-complete conven

tional cryptosystem, a theoretical result which might provide a

useful avenue for further research aimed at getting proofs of

security.

Chapter X describes a cryptanalytic method for breaking an

apparent improvement which has been suggested to the DES. Its

description of potential weakness in a particular scheme for

multiple encipherment carries with it a simple moral: simple

extensions or modifications to a cryptographic algorithm can

have unexpected weaknesses.

6/4/79 Chapter I Page 2

INTRODUCTION

2. Conventional Cryptography

Conventional cryptographic systems provide secrecy and au-

thentication to information which may be overheard or mod ified

by unauthorized third parties. This is done by encrypting (or

enciphering) the plaintext P with a k~y K to produce the

ciphertext C: SK(P) = C, where SK denotes the encjphering func-

tion under key K. Only authorized users know K, and so only

-1 they can decipher C by computing P = SK (C). Although unau-

thorized users know C and the set of functions {SK}' this does

not allow them either to determine P or to mod ify C to produce

a C' which deciphers to a meaningful message.

The security of such systems resides entirely in the key

K. All other components of the system are assumed to be public

knowledge. To maintain security, the legitimate users of the

system must learn K, while preventing others from learning it.

To date, this has been done by send ing K to the legitimate

users of the system over special physicC'lly secure communica-

tion channels, e.g., registered mail or couriers. The flow of

information in a conventional cryptographic system is shown in

figure 1.

6/4/79 Chapter I Page 3

SENDER
P

EAVESDROPPER

ENCRYPTIONI ~DECRYPTION ~RECEIVER
C

----- ---- ----
-- ... ---------

K

FIG 1
THE FLOW OF INFORMATION IN

A CRYPTOGRAPHIC PRIVACY SYSTEM.

P

PAGE 3A

INTRODUCTION

3. Public Key Systems

The reader interested in public key cryptography is re

ferred to [4] for an excellent tutorial overview. So that this

thesis is self contained, two sections from that paper are

reproduced below with only minor changes to introduce the con

cepts of public key systems and digital signatures.

The difficulty of distributing keys has been one of the

major limitations on the use of conventional cryptographic

technology. In order for the sender and receiver to make use

of a physically secure channel such as registered mail for key

distribution, they must be prepared to wait while the keys are

sent, or have made prior preparation for cryptographic communi

cation.

In the military, the chain of command helps to limit the

number of user-pair connections, but even there, the key dis

tribution problem has been a major impediment to the use of

cryptography. This problem will be accentuated in large com

mercial communication networks where the number of possible

connections is (n2_n)/2 where n is the number of users. A sys

tem with one million users has almost 500 bill ion possible con

nections, and the cost of distributing this many keys is prohi

bitive.

At this point we introduce a new kind of cryptographic

system which simplifies the problem of key distribution. It is

6/4/79 Chapter I Page ~

INTRODUCTION

possible to dispense with the secure key distribution channel

of figure 1, and communicate over the insecure channel without

any prearrangement. As indicated in figure 2, two way communi

cation is allowed between the transmitter and receiver, but the

eavesdropper is passive and only listens. Systems of this type

are called public key systems, in contrast to conventional sys

tems.

The reason that keys must be so carefully protected in

conventional cryptographic systems is that the enciphering and

deciphering functions are inseparabl e. Anyone who has access

to the key in order to encipher messages can also decipher mes-

sages. If the enciphering and deciphering capabilities are

separated, privacy can be achieved without keeping the enci

phering key secret, because it can no longer be used for deci

phering.

The new systems must be designed so that. it is easy to

generate a random pair of inverse keys E, for enciphering, and

D, for deciphering, and easy to operate with E and D, but com

putationally infeasible to compute D from E.

A public key cryptosystem is a pair of families {EK} and

{OK} for K in {K}, of algorithms representing an invE'rtibJ e

transformation and its inverse defined such that:

1) For every K in {K}, DK is the inverse of EK• That is,

DK(EK(~)) = M, for any K and any ~.

2) For every K in {K} and M in {M}, the values EK(M) and

6/4/19 Chapter I Page 5

MESSAGE ...
SOURCE " P

.,

EAVESDROPPER
~ ..

TRANSMITTER ~
I~

411 ~

KEY
SOURCE #1

FIG 2
THE FLOW OF INFORMATION IN A

PUBLIC KEY SYSTEM.

.. RECEIVER III.. • JIll'"

P .. ~

KEY
SOURCE #2

PAGE SA

INTRODUCTION

DK(M) are easy to compute.

3) For nearly all K in {K}, any easily computed algorithm

equivalent to DK is computationally infeasible to

derive from EK•

4) For every K in {K}, it is feasible to generate the in

verse pair EK and DK from K.

The third property allows a user's enciphering key EK to

be made public without compromising the security of his secret

deciphering key DK• The cryptographic system is ther~fore

split into two parts, a family of enciphering transformations,

and a family of deciphering transformations in such a way that

given a member of one family it is infeasible to find the

corresponding member of the other.

The fourth property guarantees that there is a feasible

way of computing corresponding pairs of inverse transformations

when no constraint is placed on what either the enciphering or

deciphering transformation is to be. In practice, the crypto

equipment must contain a true random numb~r generator (e.g., a

noisy diode) for generating K, together with an algorithm for

generating the EK-Dk pair from K.

A system of this kind greatly simplifies -the problem of

key distribution. Each user generates a pair of inverse

transformations, E and D. He keeps the deciphering transforma

tion D secret, and makes the enciphering transformation E pub

lic by, for example, placing it in a public directory similar

6/4/79 Ch8pter I Page 6

INTRODUCTION

to a phone book. Anyone can now encrypt messages and send them

to the user, but no one else can decipher messages intended for

him.

If in addition to conditions 1) - 4) above, the set of

transformations satisfy

1') For every K in {K}, EK is the inverse of DK• That is

for any K and any M, EKDK(~) = M.

It is possible, and often desirable, to encipher with D

and decipher with E. For this reason, EK is sometimes called

the public key, and DK the secret (or signing) key.

6/4/79 Chapter I Page 7

INTRODUCTION

4. Digital Signatures

A second difficulty which has limited the appl ication of

conventional cryptography is its inability to deal with the

problem of dispute. Conventional authentication systems can

prevent third party forgeries, but cannot settle disputes

between the sender and receiver as to what message, if any, was

sent.

In current commercial practice, the validity of contracts

and agreements is guaranteed by handwri tt.en signatures. A

signed contract serves as proof of an agreement which the hold

er can present in court if necessary, but the use of signatures

requires the transmission and storage of written documents: a

major barrier to more widespread use of electronic communica

tions in business.

The essence of a signature is that although only one per

son can produce it, anybody can recognize it. If there is to

be a purely digital replacement for this paper instrument, each

user must be able to produce messages whose authenticity can be

checked by anyone, but which could not have been produced by

anyone else, especially the intended recipient. In a conven

tional system the receiver authenticates any message he re

ceives from the sender by deciphering it in a key which the two

hold in common. Because this key is held in common, however,

the receiver has the ab il ity to produce any cryptogram that

6/4/79 Chapter I Page 8

INTRODUCTION

could have been produced by the sender and so cannot prove that

the sender actually sent a disputed message.

Publ ic key cryptosystems provide a direct solution to the

signature problem, if they satisfy condition 1'). Systems

which almost satisfy 1') are also usable (see chapter VI).

If user A wishes to send a signed message M to user B, he

operates on it with his private key DA to produce the signed

message S = DA(M). DA was used as A's deciphering key when

privacy was desired, but is now used as his "enciphering" or

"signing" key. When user B receives S he can recover ~ by

operating on S with A's public key EA'

B saves S as proof that user A sent him the particular

message M. If A later disclaims having sent this message, E

can take S to a judge who obtains EA and checks that EA(S) = M

is a meaningful message with A's name at the end, the proper

date and time, etc. Only user A could have generated S because

only he knows DA, so A will be held responsible for having sent

M.

This technique provides unforgeable, message dependent,

digital signatures, but allows any eavesdropper to determine M

because only the public information EJI is needed to recover M

from S. To obtain privacy of communication as well, A can en

crypt S with B's public key and send EB(S) instead of S. Only

B knows DB' so only he can recover S and thence M. B still

saves S as proof that user A sent him M.

Other methods of generating digital signatures which do

6/4/79 Chapter I Page 9

INTRODUCTION

not depend on publ ic key crypt.osysterns have been suggested [6].

[19] and Chapter V.

[Note : This concludes the two sections taken largely fr·om

[4].]

6/4/79 Chapter I Page 10

II. ONE WAY HASH FUNCTIONS

There are many instances in which a large data field (e.g.

10, 000 bits) needs to be authenticated, but only a small data

field (e.g. 100 bits) can be stored or authenticated. (See,

for example, chapter V). It is often required that it be in

feasible to compute other large data fields with the same image

under the hash function, giving rise to the need for a ~ way

hash function.

Intuitively, a one way hash function F is one which is

easy to compute but difficult to invert and can m?p arbitrarily

large data fields onto much smaller ones. If y = F(x), then

given x and F, it is easy to compute y, but given y and F it is

effectively impossible to compute x. More precisely:

1) F can be applied to any argument of any size. F ap

plied to more than one argument (e.g. F(x1 ,x2)) is

equi val ent to F appl ied to the concatenation of the

arguments, i.e. F«x1 ,x2».

2) F always produces a fixed size output, which, for the

sake of concreteness, we take to be 100 bits.

3) Given F and x it is easy to compute F(x).

4) Given F and F(x), it is computationally infeasible to·

determine x.

5) Given F and x, it is computationally infeasible to

find an x' i x such that F(x) = F(x').

The major use of one way functions is for authentication.

6/4179 Chapter II Page 11

ONE WAY HASH FUNCTIONS

If a value y can be authenticat.ed, we can authenticate x by

computing

F(x) = y

and authenticating y.

No other input x' can be found (al though they probably ex 1st)

which will generate y. A 100 bit Y can authenticate an arbi

trarily large x. This property is crucial for the convenient

authentication of large amounts of information. Although a 100

bit y is plausible, selection of the size in a real system in

volves tradeoffs between the reduced cost and improved effi-

ciency of a smaller size, and the improved security of a larger

size.

Because y is used to aut.henticate the corresponding x, it

would be intolerable if someone could comput.e an x' such that y

= F(x) = F(x'). The fraudulent x' could be substituted for the

legitimate x and would be authenticated by the same informa

tion. If y is 100 bits long, an interloper must try about 2100

different values of x' before getting a value such that F(x') =

y. In an actual system, F will be applied to many different

values of x, producing many different values of y. As a conse- .

quence, trying fewer than 2100 different values of x will prob

ably yield an x' such that F(x') = y for some already authenti-

cated y. To take a concrete example, assume F has been applied

to 240 different values of x, and produced 240 corresponding

values of y, each of which has been authenticated. If the y's

are 100 bits, then a random search over 260 values of x would

6/4/79 Chapter II Page 12

ONE WAY HASH FUNCTIONS

probably yield an x' such that y = F(x) = F(x') for some value

of y. While this search is still difficult, it is easier than

searching over 2100 different values of x. This demonstrates

that y might have to be longer than expected in a heavily used

system. 100 Forcing an opponent to search over all 2 different

values of x would be more desirable. This can usually be done

by using many different functions, F" F2 , The effect of

using many different one way functions is to prevent analysis

of F by exhaustive techniques, because each value of x is au-

thenticated witl'1 a distinct Fi • This will significantly in-

crease security, yet requires only minor changes in implementa-

tion.

Functions such as F can be defined in terms of convention-

al cryptographic functions [6 J. Assume we have a conventional

encryption function C(key,plaintext) which has a 200 bit key

size and encrypts 100 bit blocks of plaintext into 100 bit

blocks of ciphertext. (It is a common misconception that the

key can be no larger than the plaintext blocksize, but as an

example the DES can be regarded as having a 768 bit key and a

64 bit block size).

We first define F 0' which is simpler than F and wMch sa

tisfies properties 2, 3, 4, and 5; but whose input x is res-

tricted to be 200 bits. We define

FO(X) = y = C(x,Q)

FO accepts a 200 bit input x and produces a 100 bit output y,

as desired. Furthermore, given y, the problem of finding an x'

6/4/79 Chapter II Page 13

ONE WAY HASH FUNCTIONS

such that F(x') = y is equivalent to finding a key x' such that

y = C(x' ,Q). If C is a good encryption function, this is com-

putationally infeasible.

If the input x to F is fewer than 200 bits, then we CAn

"pad" x by adding 0' s until it is exactly 200 bits, and then

define F = F o. If the input is more than 200 bits, we will

break it into '00 bit pieces. Assume that

and that each x. is '00 bits long. Then F is defined in terms
1

of repeated applications of FO. Fe is first applied to x, and

x2 to obtain y, Then =

FO(Y2'X4), Y4 = Fo(Y3'x5), ••• Yi = Fo(Yi_"X i +')' ••• Yk-' =

FO(Yk_2'xk). F(x) is defined to be Yk-,; the final Y in the

series. If x is not an exact multiple of '00 bits, then it is

padded with O's, as above.

It is obvious that F can accept arbitrarily large values

for x. Although complexity theory has not progressed to the

point where it is possibJ e to prove that it will be computa-

tionally infeasible to find any vector ~' not equal to x such

that F(~) = F(~'), a p]ausibility argument cen be made induc-

tively thc:ot this is the case. As a basis, when k = 2, the pro-

=

perty holds because F(~) = F 0 (X, ,x2), and the property holds

for FO by assumption. We establish the case for k = 3 by con

tradiction. We assume that FCx"x2 ,x3) = F(x,',x2 ',x3 ') and

that Xi i Xi' for some i in {',2,3l. We first note that

F(X"x2 ,x3) = FO(Y1'X3) by definition. If either y, -t Y1' or

6/4/79 Chapter II Page 14

ONE WAY HASH FUNCTIONS

X3 i X3" and FO(y"x3) = FO(y,',x3 '), then we have violated

assumption 5 made about FO. If y, = y,' and x3 = x3" then ei

ther x, i x,' or x2 i x2 '. By definition FO(x, ,x2) = y" and

FO(x, ',x2 ') = y,', so FO(x"x2) = FO(x, ',x2 ') and again we con

tradict assumption 5 made about FO. This line of logic can be

extended to the cases k = 3. 4, 5,

This argument cannot be made fully rigorous until the pro

perties of F 0 are made rigorous. This must await further ad

vances in complexity theory.

6/4/79 Chapter II Page'5

III. A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES

This chapter describes the first public key distribution

system and the first publ ic key cryptosystem, which were both

based on the concept of a "puzzle".

Puzzles can be used in a variety of ways to make public

key distribution systems where the effort involved to break the

system grows as the square of the effort to use the system.

The method described in chapter IV is not the simplest, but was

selected because it requi.red the least memory and was deter

ministic. (As an interesting aside, Ron Rivest sent the author

a letter mentioning this fact, and described a simpler system

which was, in fact, the system the author originally devised.)

As originally conceived, the method was more closely

linked to the concept of a one way function and was probabilis

tic in nature. Basically, it centered on the observation that

if two people randomly select n numbers from a space of n2

numbers, there is a significant probability that both will have

selected at least one number in common. This is closely relat

ed to the "birthdc-y problem" [41 J. Given n people in a room,

what is the probability that at least two of them were born on

the same day? The probability becomes surprisingly high when

there are more than square root(365) = 20 people in the room.

This surpri sing statistical result can be used for public

key distribution rather easily. If A and B wish to agree on a

2 common key, then each selects n numbers from a space of n

numbers. The probability that they selected a common number is

significant and if A and B can determine this common number it

6/4/79 Chapter III Page 16

A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES

can be used as a cryptographic key in further communications.

Note that the number of possible keys is n2 , so anyone who

2 tries to break this method must search through all n , rather

than the O(n) keys that A and B know.

A and B determine the common number as follows: A applies

a one way function F to hide each of his n randomly chosen

numbers, and sends them to B. B applies F to hide his randomly

chosen numbers and sends the result to A. A and B can now sort

both lists of hidden numbers, and look for a match. If A and B

chanced upon the same number, then the hidden version of this

number computed by A and P will be the same. All that E knows

is the hidden versions of the numbers. E can easily look

through A's and B's hidden numbers and find the match, but then

E must search through all n2 possible values to find the origi-

nal value, which is used as the key. A and B, on the other

hand, already KNOW the original values, because they generated

the hidden values by applying F to numbers they knew.

The next phase in the evolutionary development of the

method was to create a deterministic version of the original

method. This is done fa irly easily. Instead of selecting n·

numbers from n2 possibilities completely at random, select one

number randomly in the range from 1 to n, the second number

randomly in the range from n+1 to 2 • n, the third number ran-

domly in the range from 2 • n + 1 to 3 • n, the ith number from

the range (i-1) • n + 1 to i • n, and the nth number from the

range (n-1) • n + 1 to n • n. This guarantees that there must

6/4/79 Chapter III Page 17

A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES

be one number in each of the n possible ranges. By picking a

random range, and then searching sequentially through all pos

sible numbers in that range, a "collision" must occur. In oth

er words, f>. picks a single number randomly from each range,

hides them, randomly permutes their order and transmits the

permuted hidden values to P. B picks a random range, hides all

n numbers in that range, but does not send the result to A.

Instead, E looks for a match between the hidden numbers A sent,

and the hidden numbers E just generated. When E finds the

match, E sends the hidden value back to A, who compares t.his

single hidden number against the n hidden numbers A generated.

The method now deterministically achieves an n2:n ratio of ef

fort (work factor). However, it still requires a great deal of

memory.

The method described in chapter IV was the next p.volution

ary step beyond this.

The "puzzles" method also evolved into the first public

key cryptosystem. Easically, the enciphering and deciphering

keys are just explicit tabular representations of randomly

chosen enciphering and deciphering functions. The only modifi

cation is to the enciphering key. It cannot be represented in

a simple tabular format, because this would allow it to be in

verted too easily, i.e., the public enciphering key must be

hard to invert, and a tabular format is not hard to invert, so

the tabular format must be extended somewhat. This is done by

6/4/79 Chapter III Page 18

A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES

enpuzzling the elements of the range.

First, we define the enpuzzlement of an argument by the

function:

P(x,n)

where x is the value to be enpuzzled, and n represents the

difficul ty of breaking the resulting puzzle. P<345, 45) means

that the number "345" can be recovered by putting in 45 units

of effort (on average).

A small enciphering key; which maps plaintext into

ciphertext 7, plaintext 2 into ciphertext 3, and plaintext

8 into ciphertext 5; is shown in figure 1, with n = B.

The Enciphering Key

P(7,B)

2 P(3,8)

3 P(6,S)

4 P(B,8)

5 P(1,8)

6 P(4,8)

7 P(2,8)

8 P(5,8)

Figure 1

Note that it requires O(n) units of effort to compute

6/4/79 Chapter III Page 19

A PUBLIC KEY CRYPTOSYSTEM BASED ON PUZZLES

E(plaintext) from this tabular representation, but that comput-

2
ing D(ciphertext) requires O(n).

The corresponding secret deciphering key is shown in fig-

ure 2.

The Deciphering Key

1 5

2 7

3 2

4 6

5 8

6 3

7 1

8 4

Figure 2

The secret deciphering key is not enpuzzled, and so it is

easy to compute D(ciphertext) from it, (or to compute

E(plaintext), but this is largely beside the point). Making

the enCiphering and deciphering keys can be done in O(n) time,

enciphering requires O(n) time, deciphering can be done in unit

time, but breaking the system requires O(n2) time.

6/4/79 Chapter III Page 20

IV. PUBLIC KEY DISTRIBUTION USING PUZZLE~

1. INTRODUCTION

This chapter describes the first public key system ever

developed. Until this system. it had been assumed that a

necessary precondition for cryptographically secure communica

tions was the transmission of a key. by secret means. prior to

an attempt to communicate securely. The system described below.

however, allows two communicants to select a key publicly. but

in such a fashion that no one else can easily determine what it

is.

The body of the chapter will begin with a description of a

conventional cryptographic system. in whicp secure transmission

of the key is required. It will then develop the new concept

of a public key system. The implications of public key systems

will then be explored in more detail. with the aid of some ex

amples.

6/4/79 Chapter IV Page 21

PUBLIC KEY DISTRIBUTION USING PUZZLES

2. REVIEr!

We introduce three protagonists into our paradigm: A and

B, the two communicants, and E, the enemy, who wishes to find

out what A and E are communicating. A and R have available a

conventional cryptographic system for encrypting and decryptjng

messages that they send to each other. A, E, and E all know

the general method of encryption. A and B also have available

a normal communications channel, over which they send the bulk

of their messages. To allow A Clnd P to communicate securely,

they must load a key, which is unknown to E, into their crypto

graphic devices. The general method uses this key as a parame

ter, and will perform a particular transformation on messages

for a particular key. Because E does not know this key, he

cannot perform the particular transformation, and thus cannot

encrypt or decrypt messages.

A and B must both know what the key is, and must insure

that E does not know what it is. In the trad itional parad igm

for cryptography, this situation comes about by the transmis

sion of the key from A to E over some special and secure com

munications channel which we shall refer to as the key channel.

E cannot intercept messages sent on this channel, and the key

is therefore safe.

The key channel is not used for normal communications be

cause of its expense and inconvenience.

In view of the central position that the key channel will

6/4/79 Chapter IV Page 22

PUPLIC KEY DISTRIBUTION USING PUZZLES

occupy in this chapter, it would be wise to state, somewhat

more clearly, the conditions which it must satisfy. There are

two such conditions.

1) E cannot modify or alter messages on the key channel,

nor can he inject false or spurious messages.

2) E is unable to determine the content of any message

sent over the key channel, i.e., E cannot intercept

the messages.

Systems of this type are referred to as conventional cryp

tographic systems, and their study dates back to antiquity (See

Shannon [35J for a good overview). We now make a modification

which had not previously been considered.

6/4/79 Chapter IV Page 23

PUBLIC KEY DISTRIBUTION USING PUZZLES

3. THE NEW APPROACH

We modify the t.raditional paradigm by dropping the second

restriction on the key channel, but not the first. We no

longer demand that E be unable to learn what is sent on the key

channel, rather, we assume that E has perf~ct knowledge of

everything that is sent over this channel [footnote page 31].

Al though in some in stances the key and normal channel s may be

one and the same, we shall treat them as logically distinct.

It is the thesis of this chapter that secure communica-

tions between A and B can take place under t.he conditions we

have just described.

The reader should clearly understand that no key lurks in

the background. There is no method by which A and B can com-

municate other than the normal channel and the key channel.

They have made no secret preparations prior to the time that

they wish to communicate securely.

We must carefully consider what constitutes a solution.

If A and B eventually agree upon a key, and if the work re-

quired of E to determine the key is much higher than the work·

put in by either A or E to select the key, then we have a solu-

tion. Note that E can determine the key used in most conven-

tional cryptographic systems (with the exception of the one

time pad) simply by trying all possible keys and seeing which

one produces a legible message. However, the amount of work

required grows exponentially compared to the amount of work put

6/4/79 Chapter IV Page 24

PUBLIC KEY DISTRIPUTION USING PUZZLES

in by A or P. The public key solution described is not ex

ponential, but the amount of work required of E to determine

the key increases as the square of the amount of work put in by

A and P to select the key. Methods which appear to force E to

put in an amount of work which grows exponentially with the

amount of work A and B put in have been discovered since the

conception of this method. While this method is therefore not

as practical, its simplicity makes it the most nearly provably

secure system and the best for pedagogical purposes. It relies

on little more than the existence of one way functions.

6/4/79 Chapter IV Page 25

PUBLIC KEY DISTRIBUTION USING PUZZLES

4. THE ~THOD

The method is based on the concept of a puzzle, that is, a

cryptogram which is meant to be broken. To solve the puzzle,

we must cryptanalyze the cryptogram. Having done this, we

learn the information that was "enpuzzled", the plaintext of

the cryptogram. Just as we can encrypt plaintext to produce a'

cryptogram, so we can enpuzzle information to produce a puzzle.

A puzzle, though, is meant to be solved, while ideally, a cryp-

togram cannot be cryptanalyzed. To solve a puzzle, all you

need do is put in the required amount of effort.

To sharpen our definition. we will consider the following

method of creating puzzles. First, select a strong encryption

function. We are not interested in the details of how this en

cryption function works: our only interest is that it does

work. The reader can self'ct any encryption function that he

feels is particularly strong and effective. A concrete example

might be the DES encryption function [24J, which with a longer

key is currently felt to be quite strong.

After selecting an encryption function, we create our puz

zle by encrypting some piece of information with that function

wi th a key chosen at random from a specified subset of the

keyspace. We artificially restrict the size of the key space

used with the encryption function to make the puzzle solvable.

If the key is normally 128 bits, we might use only 30 bits and

set the remaining 98 bits to O. \-,Thile searching through 2128

6/4179 Chapter IV Page 26

PUBLIC KEY DISTRIBUTION USING PUZZLES

possible keys is completely infeasible, searching through 230

is tedious, but quite possible. We can control the difficulty

of solving a puzzle, simply by changing the restriction on the

size of the key space used. To make the puzzle harder to

solve, we might select a 40 bit key, while to make it easier,

we might select a 20 bit key. vre assume the strength of the

underlying encryption function is adequate to insure that our

puzzle can only be solved by exhaustive search through the res

tricted key space, and we can then adjust the size of the key

space to precisely control the difftcul ty of solving the puz

zle.

There is still one more point that must be brought out.

In cryptanalyzing an encrypted message, the cryptanalyst relies

on redundancy in the message to indicate when the proper key is

tried. If the information we enpuzzle is random, there will be

no redundancy, and thus no way of solving the puzzle. We must

deliberately introduce redundancy into our puzzle, so that it

can be solved. This can be done easily enough by encrypting,

along with the information, a constant that is publicly stated.

When we try to decrypt the puzzl e with a particular key, the

recovery of this constant can be taken as evidence that we have

selected the right key, and thus have solved the puzzle. The

absence of the constant part in the decrypted puzzle guarantees

that we have used the wrong key, and should tr y ag ai n. Wh il e

an incorrect key can produce a false alarm, if the constant

field is larger than the number of bits in the restricted key

6/4/79 Chapter IV Page 27

PUBLIC KEY DISTRIBUTION USING PUZZLES

space, then unicity distance arguments indicate that false

alarms should be rare.

With the concept of puzzle in hand, we can proceed. We let

A and B agree upon the value of N which they wish to use. A

then generates N puzzles, and transmits these N puzzles to P

over the key channel. A chooses the size of the key space so

that these puzzles require O(N) effort to break. (That is, A

selects a key space of size K·N, for a constant, K.) Each puz

zle contains, within itself, two pieces of information. Nei

ther piece of information is readily available to anyone exa

mining the puzzle. By devoting O(N) effort to solving the puz

zle, it is possible to determine both these pieces of informa

tion. One piece of information is a puzzle id, which uniquely

identifies each of the N puzzles. The ids were assigned by A

at random. The other piece of information in the puzzle is a

random bit string which is the proper size for use as a true

(unrestricted) key, Le., one of the possible keys to be used

in subsequent encrypted communications. To distinguish the true

keys, one for each puzzle, from the keys randomly selected from

the restricted key space to create the puzzles, we will call

the former "true keys", and the latter, "restricted keys".

Thus, N true keys are enpuzzled, and in the process of enpuz

zling each true key, a restricted key is used.

When B is presented with this menu of N puzzles, he

selects a puzzle at random and spends O(n) effort to solve the

puzzle. B then transmits the id back to A over the key chan-

6/4/79 Chapter IV Page 28

PUBLIC KEY DISTRIBUTION USING PUZZLES

nel, and uses the true key found in the puzzle as the key for

further encrypted communications over the normal channel.

A, P, and E all know the N puzzles. They also know the

id, because B transmitted the id over t.he key channel. E knows

the corresponding true key, because E selected the puzzle to be

solved. A knows the correspond ing true key, because A knows

which true key is associated with the id that P sent.. E knows

only the id, but does not know the true key. E does not know

which puzzle contains the true key that E selected, and which A

and P are using, even though he knows the id. To determine

which puzzle is the correct one, he must break puzzles at ran

dom until he encounters the one with the correct ide

If E is to determine the key which A and E are using,

then, on an average, E will have to solve 1/2 N puzzles before

reaching the puzzle that E solved. Each puzzle has been con

structed so that it requires O(N) effort to break, so E must

spend, on an average, O(N2) effort to determine the key. B, on

the other hand, need only spend O(N) effort t.o break the one

puzzle he selected, while A need only spend O(N) effort to

manufactur e the N puzzl es. Thus, both A and E will only put

in O{N) effort. A detailed description appears in [21].

In summary: the method allows the use of channels satisfy

ing assumption 1, and not satisfying assumption 2, for the

transmission of key information. We need only guarantee that

messages are unmod ified, and we no longer require that they be

unread. If the two communicants, A and E, put in O(N) effort,

6/4/79 Chapter IV Page 29

PUBLIC KEY DISTRIBUTION USTNG PUZZLES

then the enemy, E, must. put in O(N2) effort to determine the

key.

Generating the n puzzles is orders of magnitude less cost-

ly than transmitting them. Creating a method in which the ra-

tio of efforts was still 2. n .n, but which did not require

transmitting O(n) bits would be a substantial and practical im-

provement. There seems no reason in principal why such an im-

provement should not be possible.

6/4/79 Chapter IV Page 30

PUBLIC KEY DISTRIBUTION USING PUZZLES

5. FOOTNOTE

Wyner [39J introduced a different (information theoretic)

approach to secure communication over an insecure channel

wi thout prearrangement. Wynf>r assumes that the wiretapper E

has inferior reception of the messages being transmitted. By

taking advantage of this inferior reception, Wyner shows how

the wiretapper can be completely confused. Our approach is dif

ferent and assumes that both the legitimate receiver and the

wiretapper perfectly receive whatever the transmitter sends.

6/4/79 Chapter IV Page 31

V. A CERTIFIED DIGITAL SIGNATURE

1. Introduction

Digital signatures prorr.ise to revolutionize business by

phone or other telecommunication devices [6J but use of the

currently known pubHc key cryptosystems [18], [20J, [21], [31]

is risky until they have been carefully certified. A signature

system whose security rested solely on the security of a con

ventional cryptographic function would be "prE"-certified" to

the extent that the underlying encryption function had been

certified. The delays and cost of a new certification effort

would be avoided. Lamport and Diffie [6J suggested such a sys

tern, but it has severe performance drawbacks. Lipton and Ma

tyas [17J nonetheless suggested its use as the only near term

solution to a pressing problem.

This chapter describes a digital signature system which is

"pre-certified" in the above sense, generates signatures of

about 15 kilobits (2 kilobytes), requires a few thousand appli

cations of the underlying encryption function per signature,

and only a few kilobytes of memory. If the underlying encryp

tion function takes 10 microseconds to encrypt a block, gen

erating a signature takes approximately 20 milliseconds.

6/4/79 Chapter V Page 32

A CERTIFIED DIGITAL SIGNATURE

The following major points are covered:

1.) A description of the Lamport-Diffie one time signa

ture.

2.) An improved version of the Lamport-Diffie one time

signature.

3.) A method of converting anyone time signature into a

convenient signature system.

6/4/79 Chapter V Page 33

A CERTIFIED DIGITAL SIGNATURE

2. The Lamport-Diffie One Time Signature

The Lamport-Diffie one time signature [6J is based on the

concept of a one way function [7] ,[38], If y = F(x) is the

result of applying the one way function F to input x, then the

key observation is:

The person who computed y = F(x) is the only person who

knows x. If y is publicly revealed, only the origi.

nator of y knows x, and can choose to reveal or con

ceal x at his whim.

This is best clarified by an example. ~uppose a person A

has some stock, which he can sell at any time. A might wish to

sell the stock on short notice, which means that A would like

to tell his broker over the phone. The broker, E, does not

wish to sell with only a phone call as authorization. To solve

this problem, A computes y = F(x) and gives y to E. They agree

that when A wants to sell his stock he will reveal x to B.

(This agreement could be formal ized as a wrHten contract [17]

which includes the value of y and a description of F but not

the value of x.) E will then be able to prove that A wanted to

sell his stock, because B will be able to exhibit x, and demon

strate that F(x) = y.

If A later denies having ordered E to sell the stock, B

6/4/79 Chapter V Page 34

A CERTIFIED DIGITAL SIGNATURE

can show the contract and x to a judge as proof that A, con-

trary to his statement, did order the stock sold. Both F and y

are given in the original (written) contract, so the judge can

compute F(x) and verify that it equals y. The only person who

knew x was A, and the only way E could have learned x would be

if A had revealed x. Therefore, A must have revealed x; an ac-

tion which by prior agreement meant that A wanted to sell his

stock.

This example illustrates a signature system which "signs"

a single bit of information. Either A sold the stock, or he

did not. If A wanted to tell his broker to sell 10 shares of

stock, then A must be able to sign a several bit message. In

the general Lamport-Diffie scheme, if A wanted to sign a mes-

sage m whose size was s bits, then he would precompute F(x 1) =

Y1' F(x2) = Y2' F(x3) = Y3'··· F(xs) = Ys· A and B would agree

on the vector Y = Y1' Y2 ••• Ys. If the jth bit of m was a 1,

A would reveal x.. If the jth bit of m was a 0, A would not
J

reveal In essence, each bit of m would be individually

signed. Arbitrary messages can be signed, one bit at a time.

Tn practice, long messages (greater than 100 bits) can be

mapped into short messages (100 bits) by a one way function and

only the short message signed. We can therefore assume,

without loss of generality, that all messages are a fixed

length, e.g., 100 bits.

The method as described thus far suffers from the defect

that B can alter m by changing bits that are 1's into a's. B

6/4/79 Chapter V Page 35

A CERTIFIED DIGITAL SIGNATURE

simply denies he ever received x., (in spite of the fact he
J

did). However, O's cannot be changed to , 'so Lamport and Dif-

fie overcame this problem by signing a new message m', which is

exactly twice as long as m and is computed by concatenating m

with the bitwise complement of m. That is, each bit mj in the

original message is represented by two bits, m. and the comple
J

ment of mj in the new message m'. Clearly, one or the other

bit must be a O. To alter the message, B would have to turn a

o into a " something he cannot do.

It should now be clear why this method is a "one time"

signature: Each Y = y" Y 2' ••• Y 2 s can only be used to sign

one message. If more than one message is to be signed, then

new values Y" Y2, Y3, ••• are needed, a new Yi for each mes-

sage.

One time signatures are practical between a single pair of

users who are willing to exchange the large amount of data

necessary but they are not practical for most applications

without further refinements. If each y. is '00 bits long and a
1

100 bit one way hash function of each message is signed, each

Yi must be 20,000 bits. If 1000 messages are to be signed be

fore new public authentication data is needed, over 20,000,000

bi ts or 2.5 megabytes must be stored as public informat.ion.

Even if this is not overly burdensome when only two users, A

and B, are involved in the signature system, if B had to keep

2.5 megabytes of data for 1000 other users, B would have to

store 2.5 gigabytes of data. While possible, this hardly seems

6/4/79 Chapter V Page 36

A CERTIFIED DIGITAL SIGNATURE

economical. With further increases in the number of users, or

in the number of messages each user wants to be able to sign,

the system becomes completely unwieldy.

How to eliminate the huge storage requirements is a major

subject of this chapter.

6/4/79 Chapter V Page 37

A CERTIFIED DIGITAL SIGNATURE

3. An Improved One Time Signature

This section explains how to reduce the size of signed

messages in the Lamport-Diffie method by almost a factor of 2.

As previously mentioned. the Lamport-Diffie method solves

the problem that 1 's in the original message can be altered to

O's by doubling the length of the message, and signing each bit

and its complement independently. In this way, changing a 1 to

a 0 in the new message, m', would result in an incorrectly for-

matted message, which would be rejected.

represents a solution to the problem:

In essence, this

Create a coding scheme in which accidental or inten

tional conversion of 1's to O's will produce an ille

gal codeword.

An al ternati ve coding method which accompl ishes the same

result is to append a count of the number of 0 bits in m before

signing. The new message, m', would be only log2 s bits longer

than the original s bit message, m. If any 1's in m' were

changed to O's (O's cannot be changed to 1 's), it would falsify

the count of O's.

Notice that while it is possible to reduce the count by

changing 1 's to O's in the count field, and while it is possi

ble to increase the number of O's by changing 1 's to O's in the

6/4/79 Chapter V Page 38

A CERTIFIED DIGITAL SIGNATURE

message, these two "errors" cannot be made to compensate for

each other. e

A small example is in order. Assume that our messages are

8 bits long, and that our count is 10g2 8 = 3 bits long. If

our message m is

m = 11010110

Then m' would be

m' = 11010110,011

(Where a comma is used to clarify the division of m' into m and

its 0 count.)

If the codeword 11010110,011 were changed to 01010110,011

by changing the first 1 to a 0, then the count 011 would have

to be changed to 100 because we now have 40's, not 3. Put

this requires changing a 0 to a 1, something we cannot do. If

the codeword were changed to 11010110,010 by altering the 0

count then the message would have to be changed so that it had

only 20's instead of 3. Again, this ch8nge is illegal because

it requires changing O's to 1 'so

This improved method is easy to implement and cuts the

size of the signed message almost in half, although this is

still too large for most applications; e.g., it reduces 2.5

gigabytes to 1.25 gigabytes.

6/4/79 Chapter V Page 39

A CERTIFIED DIGITAL SIGNATURE

4. Tree Authentication

A new protocol would eliminate the large storage require-

ments and the need for prior arrangements. If A transmitted Y.
1

to E just before signing a message, then B would not previously

have had to get and keep copies of the Y. from A. Unfortunate-
1

ly, such a protocol would not work because anyone could claim

to be A, send a false Y., and tr ick B into thinking he had re
I

ceived a properly authorized signature when he had received

nothing of the kind. B must somehow be able to confirm that he

was sent the correct Y. and not a forgery.
1

The problem is to authenticate A's Y .• The simplest (but
1

unsatisfactory) method is, as suggested above, to keep a copy

of A's Yi • In this section, we describe a method called "tree

authentication" which can be used to authenticate any Y. of any
1

user quickly and easily, but which requires minimal storage.

Problem Definition: Given a vector of data items! = Y1,.

Y2 , ••• Yn design an algorithm which can quickly authenticate a

randomly chosen Y. but which has modest memory requirements,
1

i.e., does not. have a table of Y1, Y2, •.• Yn •

6/4/79 Chapter V Page 40

A CERTIFIED DIGITAL SIGNATURE

We authenticate the Y. by "divide and conquer". As illus-
1

trated in figure 1, define the function HCi,j,!) by

2.) HCi,j,Y> =

FCY.)
1

where k = Ci+j)/2

for the <i ,j> pairs of figure 1 and its extensions to larger

trees described below.

HCi,j,Y) is a function of Y., Y. l' ... Y. and can be used
- 1 1+ J

to authenticate all of them. HC1,n,!) can be used to authenti-

cate Y 1 through Yn and is only 100 bits, so it can be con

veniently stored. We restrict n to powers of 2 to simplify the

explanation. "

This method lets us selectively authenticate any "leaf,"

Y i' that we wish. To see this, we use an example where n = 8.

To authenticate Y5 , we proceed in the manner illustrated in

figure 2:

1.) HC1,8,!) is already known and authenticated.

and HC5,8,!) and let the receiver compute HC1,a,!) =

FC HC1,4,!), HC5,8,!)) to confirm that they are

correct.

3.) The receiver has authenticated H(5, a,!). Send

HC5,6,!) and HC7,8,!) and let the receiver compute

6/4/79 Chapter V Page 41

Y, Y2

,.

H (3,3 ,1) 0 H(4, 4, Y)O H(5,5, Y)0 H(6,6, Y) 0 H (7,7, Y) b H (8,8 , Y)

Y3 Y4 Y5

FIG 1
AN AUTHENTICATION TREE WITH N = 8.

Y6 Y7 y.
8

PAGE 41B

,

H(3,4,),:)

H(6,6,Y)(5 H(7, 7, Y)b H(8,8,Y)

Y1 Y2 . Y3 Ys Y7

FIG 2 i

.CIRCLED ENTRIES SHOW THE AUTHENTICATION PATH FOR YSI

PAGE 41C

'.

A CERTIFIED DIGITAL SIGNATURE

H(5,8,~) = F(H(5,6,!), H(7,8,!)) to confirm that

they are correct.

4.) The receiver has authenticated H(5,6,!). Send

H(5,5,!) and H(6,6,!) and let the receiver compute

H(5,6,!) = F(H(5,5,!), H(6,6.!) to confirm that

they are correct.

5.) The receiver has authenticated H(5,5,!). Send Y5 and

let the receiver compute H(5,5,!) = F(Y5) to con-

firm that it is correct.

6.) The receiver has authenticated Y5 •

Uslng this method, only log2 n transmissions are required,

each of about 200 bits. Close examination of the algorithm

will reveal that half the transmissions are redundant. For ex-

ample, H(5,6,!) can be computed from H(5,5,!) end H(6,6,!), so

there is really no need to send H(5,E,!). Similarly, H(5,8,!)

can be computed from H(5,6,!) and H(7,8,!), so H(5,e,!) need

never be transmitted, either. (The recel.ver must compute these

quantities anyway for proper authentication.) Therefore, to au-

thenticate Y5 required only that we have previously authenti

cated H(1,8,!), and that we transmit Y5 , H(6,6,!), H(7,8,!),

and H(1,4,!). That is, we require 100 log2 n bits of informa-

tion to authenticate an arbitrary Y ..
1

The method is called tree authentication because the com-

putation of H(1,n,!) forms a binary tree of recursive calls.

6/4/79 Chapter V Page 42

A CERTIFIED DIGITAL SIGNATURE

Authenticating a particular leaf Y. in the tree requires only
1

those values of H() starting from the leaf and progressing to

the root, i.e., from HCi,i,,!) to H(1,n,,!). H(1,n,,!) will be

referred to as the root of the authentication tree, or R. The

information near the path from R to HCi, i ,1) required to au-

thenticate Yi will be called the authentication path for Yi.

A "proof" that the authentication path actually authenti-

cates the chosen leaf is similar to the "proof" that F defined

in chapter II correctly authenticates its input. Again, more

rigorous proofs must await advances in complexity theory.

Although H() produces a 100 bit output, unless additional

precautions (outlined in chapter II) are taken, only 260 or 270

operations would suffice to break the system. To force the

cryptanal ysis to use 2100 operations it is necessary to make

each application of F unique, i.e., to use a family Of one way

functions F1, F2 , ••• each one of which is used only once.

The use of tree authentication is now fa irly clear. A

transmits Y. to B. A then transmits the authentication path
1

for Y.. B knows R, the root of the authentication tree, by
1

prior arrangement. P can then authenticate Y., and can accept
1

the ith signed message from A as genuine.

The prior arrangements include the computation of R by A.

If A wishes to be able to sign 1,000,000 messages, this pre-

computation will require about an hour, assuming a single en-

cryption takes 10 microseconds. (Fairchild is now (1979) pro-

ducing a 4-chip set which costs about $100 and which encrypts

6/4/79 Chapter V Page 43

A CERTIFIED DIGITAL SIGNATURE

faster than this.) The time required for the pre-computation is

linear in n, so if A desires to be able to sign 1,000,000,000

messages, his pre-computation will be about 1000 hours.

The major distinction between this method and digital sig-

natures generated using publ ic key cryptosystems is the re-

quirement that R be changed periodically because only n mes-

sages can be signed. With a publ ic key cryptosystem, it is

possible to sign an almost indefinite number of messages, and

for a user to retain DA for his I ifetime if he so desires. In

practice, this restriction does not appear to be significant.

If the jth user has a distinct authentication tree with

root R j' then tree authentication can be used to authenticate

R j just as easily as it can be used to authenticate Yi • It is

not necessary for each user to remember all the R. in order to
J

authenticate them. A central clearinghouse could accept the Rj

from all u users, and compute H(1 ,u,.!~). This single 100 bit

quantity could then be distrihuted and would serve to authenti-

cate all the R., which would in turn be used to authenticate
J

the Yi • In practice, A would remember R A and the authentica-

tion path for RA and send them to P along with Yi and the au

thentication path for Yi • (A different method of authentica

tion would be for the clearinghouse to digitally sign "letters

of reference" for new users of the system using a one time sig-

nature. Kohnfelder [14J has suggested this method for use with

public key cryptosystems; see chapter 9.)

Tree authentication and authentication using one time sig-

6/4/79 Chapter V Page 44

A CERTIFIED DIGITAL SIGNATURE

natures can be intermixed to produce systems with all the flex

ibility of public key based systems.

6/4/79 Chapter V Page 45

A CERTIFIED DIGITAL SIGNATURE

5. The Path Regeneration Algorithm

A must know the authentication path for Y.
1

before

transmitting it to B. Unfortunately this requires the computa-

tion of H(i ,j ,:0 for many different values of i and j. In the

example, it was necessary to compute H(6,6,!), H(7.8,!), and

H(1,4,!) and send them to B along with Y5 • This is simple for

the small tree used in our example, but computing

H(4194304,8388608,!) just prior to sending it would be an in-

tolerable burden. One obvious solution would be to precompute

H(1,n,!) and to save all the intermediate computations: i.e.,

precompute all authentication paths. This would certainly al-

low the quick regeneration of the authentication path for Yi ,

but would require a large memory.

A more satisfactory solution is to note that we wish to

authenticate Y1 , Y2 , Y3 , Y4 , ••• in that order. Most of the

computations used in reconstructing the authentication path for

Y. can be used in comput ing the authentication path for Y. 1.
1 1+

Only the incremental computations need be performed, and these

are quite modest.

In add it ion. although the Y. must appear to be random,
1

they can actually be generated (safely) in a pseudo-random

fashion from a small truly random seed. It is not necessary to

keep the Y. in memory, but only the small truly random seed
1

used to generate them.

6/4/79 Chapter V Page 46

A CERTIFIED DIGITAL SIGNATURF

The result of these observations is an algorithm which can

recompute each Y. and its authentication path quickly and with
1

modest memory requirements. Before describing it we review the

problem:

Problem Definition: Sequentially generate the authentica-

tion paths for Y1, Y2, Y3 , ... Yn with modest time and

space bounds.

The simplest way to understand how an algorithm can effi-

ciently generate all authentication paths is to generate all

the authentication paths for a small example.

An example of all authentication paths for n = 8 is:

leaf

6/4/79

authentication path

H(1,8,:0 H(5,8,I) H(3,4,!) H(2,2,!)

H(1,8,!) H(5,8,!) H(3,4,!) HO,l,!)

H(1,8,!) H(5,8,!) H(1,2,!) H(4,4,!)

H(1,B,!) H(5,8,!) H(1,2,!) H(3,3,!)

H(1,8,!) H(1,4,!) H(7,8,!) H(6,6,!)

H(1,B,!) H(1,4,!) H(7,8,!) H(5,5,!)

H (1 • B ,!) H (1 , 4 ,!) H (5 , 6 ,!) H (8, 8 ,!)

H(1,8,!) H(1,4,!) H(5,6,!) H(7,7,!)

TABLE 1

Chapter V Page 47

A CERTIFIED DIGITAL SIGNATURE

If we had to separately compute each entry in table 1, then it

would be impossible to efficient]y generate the authentication

paths. Fortunately, there is a great deal of duplication. If

we eliminate all duplicate entries, then table 1 becomes table

2:

leaf authentication path

Y1 H(1,a,!.) H(5,a,!.) H(3,4,!.) H(2,2,!.)

Y2 H(1,1,!.)

Y3 H(1,2,!.) H(4,4,!)

Y4 H(3,3,!)

Y5 H(1,4,!) H(7,8,!) HC6,6,!)

Y6 H(5,5,!)

Y7 H(5,6,!) H(8,8,!)

Ya H(7,7,!)

TABLE 2

Clearly we can generate all authentication paths by

separately computing each of the 2 n-1 entries in table 2, but

this would require too much memory, and it is not clear what

the execution time would be. We first consider the execution

time, the memory requirement will be considered later. Because

all computations must eventually be defined in terms of the

6/4/79 Chapter V Page 4a

A CERTIFIED DIGITAL SIGNATURE

underlying encryption function C(key ,plaintext), it seems ap-

propriate to define execution time requirements in terms of the

number of applications of C. One application of C counts as

one "unit" of computation. We shall call this "unit" the "et,"

(pronounced eetee) which stands for "encryption time."

Computing F requires a number of ets proportional to the

length of its input. In particular, if the input is composed

of 100 k bits, then F requires k-1 ets (see chapter 2).

First, we must determine the cost of computing the indivi-

dual entries. The algorithm for computing H(i,j,I) from Y does

a tree traversal of the subtree whose leaves are Y., Y. l'
1 1+

Y. 2' ••• Y .• At each non-leaf node in this traversal it does
1+ J

1 et of computation (one application of F to a 200-bit argu-

ment). A tree with j-i+1 leaves has j-i non-leaf nodes, i.e.,

j-i nodes internal to the tree. For example, a tree with 8

leaves has 4 + 3 + 2 + 1 = 10 internal nodes. Because there

are j-i non-leaf nodes, computing H(i ,j ,I) requires j-i ets,

excluding the leaves. The computations required to regenerate

a leaf (using a truly random seed in a pseudo random number

generator) will be fixed and finite. Let r be the (fixed)

number of ets required to regenerate a leaf. There are (j-i+1)

leaves, so the overall cost of computing HCi,j,I) is (j-i) +

(j-i+1) • r ets. In practice r will be a few hundred, so we

can approximate this by (j-i+1) • r ets.

We can now approximate the cost of computing each entry in

table 2. There are n entries which require about r ets, n/2

6/4/79 Chapter V Page 49

A CERTIFIED DIGITAL SIGNATURE

entries which require about 2 r ets, n/4 entries which require

about 4 r ets, and n/8 entr ies which require about 8 r ets.

This means that the total cost of computing all entries in a

single column is about 8 r ets. There are 4 columns, so the to

tal computational effort is about 4·8 r = 32 r ets. In gen

eral, the computational effort required to compute table 2 will

be n • (1 + 10g2 n) • r ets. This is because computing all the

entries in each column will require n • r ets, and there are 1

+ 10g2 n columns.

This result impl ies that an algorithm which sequentially

generated the authentication paths would require an average of

about

r • 10g2 n (5.1)

ets per path, where r is a constant representing the number of

ets required to regenerate a leaf. This is quite reasonable.

Although the time required to generate each authentication

path is small, we must also insure that the space required is

small and that the computational burden is smoothly distributed

as a function of time. We can do this by again looking at

table 2. As we sequentially generate the authentication paths,

we will sequentially go through the entries in a column. This

implies that at any point in time there are only two entries in

a column of any interest to us: the entry needed in the current

authentication path, and the entry immediately following it.

We must know the entry in the current authentication path, for

without it, we could not generate that path. At some point, we

6/4/79 Chapter V Page 50

A CERTIFIED DIGITAL SIGNATURE

will need the next entry in the column to generate the next au-

thentication path. Because it might require a great deal of

effort to compute the next entry (e.g. to compute H(1,4,!», we

need to compute it incrementally, and to begin computing it

well in advance of the time we will actually require it to gen-

erate an authentication path.

As an example, H(5,8,!) is required in the authentication

paths for Y1' Y2 , Y3, and Y4 while H(1,4,!) is required in the

paths for Y5 , Y6 , Y7, and Y8" The values of HO for the first

authentication path must be precomputed with some del ay (dis-

cussed below). Once this precomputation is complete, the

succeeding values of H() required in succeeding authentication

paths must be incrementally computed. As we generate the first

4 authentication paths, we must be continuously computing

H(1,4,!) even though it is not needed until we reach Y5 • If we

wai ted until time 5 to start computing it, it would take about

4 r ets to compute and entail some delay. By computing H dur-

ing times 1 through 4, a processor capable of only r ets/unit

time is needed. In general, if the tree is of depth k it will

take 2k- 1 • r ets to compute the second element in the second

column, but there are 2k- 1 time units in which to compute it,

again requiring a processor capable of only r ets/unit time.

Similarly, we must start computing the second element in

the third column, H(1, 2,!). when we generate the first authen-

tication path. It takes about 2 r ets to compute this element

k-2) . . t (2k -2 . (2 in general • but there are 2 tlme unl s ln gen-

6/4/79 Chapter V Page 51

A CERTIFIED DIGITAL SIGNATURE

era!). in which to do this. so the processor for computing en-

tries in the third column also needs to operate at only r

ets/unit time. k-i-1 It is seen that it takes 2 • r ets to com-

t th t t . th . k-i-1 pu e _e nex en ry 1n e 1 th column and that there are 2

time units in which to do this. Thus. only one processor is

needed per column (10g2 n in all). and each processor need

operate at only r ets/unit time.

If we assume a convenient block size (of 100 bits) and if

we ignore constant factors. then the memory required by this

method can be computed. We can first determine the memory re-

quired by the computations in each column, and then sum over

all 10g2 n columns. We must have one block to store the

current entry in the column. We must al so have enough memory

to compute the next entry in the column. The memory required

while computing H<i,j,.!) is 1 + 10g2 (j-i+1) blocks. This as-

sumes a straightforward recursive algorithm whose maximum stack

depth will be 1 + 10g2 (j-i+1). The memory required to recom

pute a leaf (to recompute H<i,i.!» is ignored because it is

small (a few blocks). constant. and the same memory can be

shared by all the columns. Representing the memory require-

ments of H() in a new table in the same format as table 2 gives

table 3:

6/4/79 Chapter V Page 52

A CERTIFIED DIGITAL SIGNATURE

leaf memory required to compute entries

in authentication path (in blocks)

Y1 II 3 2

Y2

Y3 2

Y4

Y5 3 2

Y6

Y7 2

Y8 1

TABLE 3

Table 3 shows the memory required to compute each entry in

table 2. Clearly the memory required to compute H(i,i,I) is 1.

The memory required to compute H(1,2,I) = 1 + the memory re-

quired to compute H(1,1 ,I) since we first compute B(1,1 ,I) and

must remember it to compute H(1,2,I). Similarly, to compute

H(1,2t ,I) requires one more memory location than was needed for

t-1 H(1,2 ,I). The memory required for each column will be about

the memory required during the computation of a single entry in

the column because once an entry is computed, the memory is

available to compute the next entry and the old entry is dis-

carded after use. This means the total memory required will be

about: 3 + 2 + 1 = 6 blocks. (This assumes we do not recompute

H(1,8,I))·

6/4/79 Chapter V Page 53

'"

A CERTIFIED DIGITAL SIGNATURE

For n in general, there are 10g2 n columns and each column

requires, on an average, (10g2 n)/2 blocks so the total memory

required will be on the order of:

2 (10g2 n) 12 blocks

This means that the memory required when n = 220

(1,048,576) is about 20'20/2 = 200 blocks. For 100 bit blocks,

this means 20 kilobits, or 2.5 kilobytes. Other overhead might

amount to 2 or 3 kilobytes, giving an algorithm which requires

5 or 6 kilobytes of memory, in total.

Readers interested in implementing this technique can use

the following program, written in a Pascal-like language with

two multiprocessing primitives added:

1.) While <condition> wait

2.) Fork <statement>

In addition, the function "MakeY(i)" will regenerate the value

of Y. from the truly random seed.
1

Declare flag: array[O •• 10g2Cn)-1J of integer;

AP: array[0 •• 10g2(n)-1J of block;

(* AP -- Authentication Path *)

Procedure Gen(i);

Begin

i+1 For j:= 1 to n step 2 Do

6/4179 Chapter V Page 54

A CERTIFIED DIGITAL SIGNATURE

Begin

Emit(i,H(j+2 i ,j+2 i +1-1»;

Emit(i,H(j,j+2i -1»;

End;

End;

Procedure Emit(i,value);

Begin

While flag[i] i 0 wait;

APU]:= value;

i flagU]:= 2 ;

End;

Procedure H(a,b);

Begin

If a = b Return(F(~akeY(a»)

Else

Return(F(H(a,(a+b-1)/2),H«a+b+1)/2,b»;

(* Note that F should be parameterized by

the user's name and by a and b. If

this is not done, Y must be made larger

to assure security (see chapter II). *)

End;

6/4/79 Chapter V Page 55

A CERTIFIED DIGITAL SIGNATURE

(* The main program *)

Begin

For i := 0 to 10g2(n)-1 Do

Begin

flag[i]:= 0;

Fork GenCi);

End;

For j:= 1 to n Do

Begin

Print("Authentication Path ", j, " is:");

For k := 0 to 10g2Cn)-1 Do

Begin

While flag[k] = 0 wait;

PrintCAP[k]);

flag[k]:= flag[k]-1;

End;

End;

End;

The general structure of this program is simple: the main

routine forks off 10g2 n processes to deal with the 10g2 n

columns. Then it prints each authentication path by sequen

tially printing an output from each process. The major omis

sion in this program is the rate at which each process does its

6/4/79 Chapter V Page 56

A CERTIFIED DIGITAL SIGNATURE

computations. It should be cleC'lr from the previous discussion

that each process has adequate time to compute its next output.

There are three major ways of improving this algorithm.

First, each process is completely independent of the other

processes. However, separate processes often require the same

intermediate values of H(), and could compute these values once

and share the result.

Second, values of H() are discarded after use, and must be

recomputed later when needed. While saving all values of H()

takes too much memory, saving some values can reduce the compu

tation time and also reduce memory requirements. The reduction

in memory is because of the savings in memory when the saved

value is not recomputed. Recomputing a value requires memory

for the computation, while saving the value requires only a

single block.

Finally, the memory requirements can be reduced by care

fully scheduling the processes. While it is true that each

process requires about 10g2 n blocks of memory, this is a max

imum requirement, not a typical requirement. By speeding up

the execution of a process when it is using a lot of memory,

and then slowing it down when it is using little memory, the

average memory requirement of a process (measured in block

seconds) can be greatly reduced. By scheduling the processes

so that the peak memory requirements of one process coincide

wi th the minimum memory requirements of other processes, the

6/4/79 Chapter V Page 57

A CERTIFIED DIGITAL SIGNATURE

total memory required can be reduced.

All three approaches deserve more careful study because

the potential savings in time and space might be large. Even

wi thout such improvements the technique is completely practi-

cal.

Before the time requirements of the algorithm can be fully

analyzed, a description of MakeY is needed: i.e., we must

determine r in equation (5.1). If we assume that the improved

version of the Lamport-Diffie algorithm is used, then MakeY

must generate pseudo-random Xi vectors, from which Yi vectors

can then be generated. If the one way hashed messages are all

100 bits long, then the Xi vectors will have 100 + 10g2 100 =

107 elements.

The X. vect.ors can be generated using a conventional ci-
1

pher, C(key,plaintext). A single 200 bit secret key is re-

quired as the "seed" of the pseudo-random process which gen-

erates the Xi vect.ors. The output of C is always 100 bits, and

the input must be 100 bits or fewer, (if fewer, O's are append-

ed). We can now define x .. as l,J

x. . = C (seed ke y , < i , j>)
l,J

where "seedkey" is the 200 bit secret and truly random key used

as the "seed" of this somewhat unconventional pseudo-random

number generator. The s}Jbscript i is in the range 1 to n,

while the subscript j is in the range 1 to 107. There are n

possible messages, each 100 bits in length. Each Xi is a vec-

6/4/79 Chapter V Page 58

A CERTIFIED DIGITAL SIGNATURE

tor xi ,1' xi ,2' ••• xi ,107'

Determining any xi ,j knowing some of the other xi ,j' s is

equivalent to the problem of cryptanalyzing C under a known

plaintext attack. If C is a good encryption function, it will

not be possible to determine any of the xi . without already ,J

knowing the key. The secret vectors Xi are therefore safe.

We know that Yi . = F(x ..), and that HCi,i,Y) = F(Y.) =
,J 1,J - 1

F(Yi,1' Yi,2' Yi,3' .•• Yi,107). The cost of computing F(Y i)

is 106 ets, because Yi is 107'100 bits long. The total effort

to compute H(i ,i ,I) is the effort to generate the elements of

the Xi vector, plus the effort to compute F(Xi 1)' F(xi 2)' ••• , ,
F(x.), plus the effort to compute F(Yi). This is 107 ets to 1,n

compute the Xi vector, 107 ets to compute the Yi vector, and

106 ets to compute F(Y.) = HCi,i,Y). This is a total of 320
1 -

ets to regenerate each leaf in the authentication tree.

Using equation (5. 1), we know that the cost per authenti-

cation path is 320 10g2 nets. 20 For n = 2 ,this is 6400 ets.

To generate authentication paths at the rate of one per second

implies 1 et is about 160 microseconds. While easily done in

hardware, this speed is difficult to attain in software on

current computers. Reducing the number of ets per authentica-

tion path is a worthwhile goal. This can effectively be done

by reducing either the cost of computing H(i,i,!), or by reduc-

ing the number of times that H(i,i,!) has to be computed.

As mentioned earlier, keeping previously computed values

of H() rather than discarding them and sharing commonly used

6/4/79 Chapter V Page 59

A CERTIFIED DIGITAL SIGNATURE

val ues of H() among the 10g2 n processes reduces the cost of

computing each authentication path. In fact, a reduction from

over 6000 ets to about 1300 ets (for n = 220) can be attained.

(To put this in perspective, MakeY requires 320 ets and must be

executed at least once per authentication path. Therefore, 320

ets is the absolute minimum that can be attained without modi-

fying MakeY.) This means the path regeneration algorithm can

run in reasonable time (a few seconds) even when the underlying

encryption function, C, is implemented in software.

6/4179 Chapter V Page 60

A CERTIFIED DIGITAL SIGNATURE

6. Conclusion

Digital signature systems not requiring public key cryp

tosystems are possible and desirable because they are easy to

certify. Such a system was described which had modest space

and time requirements and a signature size of about 15 kilo

bits. The method described can be implemented at once, with no

delay due to certification.

6/4/79 Chapter V Page 61

VI. THE TRAPDOOR KNAPSACK

1. Introduction

This chapter describes a public key cryptosystem based on

the knapsack problem. Given a one-dimensional knapsack of

length Sand n rods of lengths a a the "k k 1. 2 •.•• ,an , napsac

problem" is to find a subset of the rods which exactly fills

the knapsack, if such a subset exists. Equivalently, find a

binary n-vector ~ such that S = ~ * ~. if such an x exists, (*

applied to vectors denotes dot product.)

A supposed solution ~ is easily checked in at most n addi-

tions, but finding a solution is believed to require a number

of operations which grows exponentially in n. Exhaustive, tri-

al and error search over all 2n possible ~'s is computationally

infeasible if n is larger than one or two hundred. The best

published method for solving knapsacks of the form considered

here requires 2n/2 complexity both in time and memory [10J. In

addition, Schroeppel [33J has devised an algorithm which takes

O(2n/2) time and O(2n/ 4) space. Theory supports the belief

that the knapsack problem is hard because it is an NP-complete

problem [footnote page 81], and is therefore one of the most

difficul t computational problems of a cryptographic nature [1

pp 363-404J [6]. Its degree of difficulty, however, is cru

cially dependent on the choice of a. If ~ = (1,2,4, ••• 2n- 1),

then solving for x is equivalent to finding the binary

6/4/79 Chapter VI Page 62

THE TRAPDOOR KNAPSACK

representation of S. Somewhat less trivially, if for all i,

(6.1)

then ~ is also easily found: xn =1 if and only if S ~ an and,

for i = n-1,n-2, ••• 1, xi = 1 if and only if

n

s -~ x • a. > L.J j J

j=i+1

(6.2)

While the theory of NP-complete problems and these exam-

pIes demonstrate that the knapsack problem is only difficult

from a worst case point of view, it is probably true that

choosing the a i independently and uniformly from the integers

between 1 and 2n generates a difficult problem with probability

tending to one as n tends to infinity. While several efficient

algorithms exist for solving the knapsack problem under special

conditions [10], [11], [16], none of these special conditions

is applicable to trap door knapsacks generated as suggested in

this chapter.

A trap door knapsack [6] is one in which careful choice of

a allows the designer to easily solve for any ~, but which

prevents anyone else from finding the solution. We will

describe one method for constructing a trap door knapsack, and

another (multiplicative) method due to Hellman is described in

[21]. We first indicate how knapsacks can be used to hide in-

formation. Each user I in a system generates a trap door knap-

6/4179 Chapter VI Page 63

THE TRAPDOOR KNAPSACK

sack vector, ~(I), and places it in a public file with his name

and address. When someone wishes to send the binary informa

tion vector x to the Ith user, he sends S = x * a(T). The in

tended recipient can recover x from ~ but no one else can.

Section 5 shows how trap door knapsacks can be used to generate

electronic signatures and receipts [6].

Eefore proceeding, a word of caution is in order. First,

as is always the case in computational cryptography, we cannot

yet prove that the systems described in this chapter are

secure. For brevity, however, we will not continue to repeat

this. Second, the trap door knapsacks described in this

chapter form a proper subset of all possible knapsacks and

their solutions are therefore not necessarily as difficult as

for the hardest knapsacks, and it is the hardest knapsacks with

which NP theory is concerned.

6/4/79 Chapter VI Page 64

THE TRAPDOOR KNAPSACK

2. ! Method for Constructing Trap Door Knapsacks

The designer chooses two large numbers, m and w, such that

w is invertible modulo m (equivalently GCD(w,m)=1). He selects

a knapsack vector,.!' which satisfies (6.1) and therefore al-

lows easy solution of S' = a' * x. He then transforms the

easily solved knapsack vector a' into a trap door knapsack vec-

tor a via the relation

a i = w • a'i mod m (6.3)

The a i are pseudo-randomly distributed and it therefore appears

that anyone who knows .!' but not wand m, would have great dif-

ficulty in solving a knapsack problem involving a. The

designer, on the other hand, can easily compute

-1 S' = w • S mod m

-1
·E = w xi

= w • xi -1 E

= Ex .• a'.
1 1

If m is chosen so that

m > ~ a' LJ i

• a. mod m
1

• w • a' i mod m

mod m

then (6.7) implies that S' is equal to 2':xi

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

a' i in integer

arithmetic as well as mod m. This knapsack is easily solved

for ~, which is also the solution to the apparently difficult,

but trap door, knapsack problem S = ~ * ~.
To help make these ideas clearer, we give a small example

with n = 5. Taking m = 8443, .!' = (171,196,457,1191,2410). and

-1 w = 2550 (so w = 3950). then a = (5457,1663.216,6013,7439).

6/4/79 Chapter VI Page 65

THE TRAPDOOR KNAPSACK

Given S = 1663 + 6013 + 7439 = 15115, the designer computes

-1 S' = w • S mod m (6.9)

= 3950 • 15115 mod 8443 (6.10)

= 3797 (6.11)

Because S' > a'5' he determines that x5 = 1. Then, using (6.2)

for the a' vector, he determines that x4 = 1, x3 = 0, x2 = 1,

x1 = 0, which is also the correct. solution to S = a * x.

Anyone else who does not know m, ~', and w has great dif-

ficul ty in solving for .! in S = a * .! even though the general

method used for generating the trap door knapsack vector a must

be public. His task can be further complicated by scrambling

the order of the ai' and by adding different random multiples

of m to each of the a i •

The example given was extremely small in size and only in-

tended to illustrate the technique. Using n = 100, which is

the bottom end of the usable range for secure systems, m can be

chosen uni formly from the numbers between 2201 + 1 and 2202 -

1· a' b h . f 1 f th [1 2100]. , , 1 can e c osen unl orm y rom e range, , a 2

can be chosen uniformly from [2'00 + 1, 2·2'°°];

chosen uni formly from

a' can be
3

a' .
1

can be

chosen uniformly from [(2i -'_1).2'00+1, 2i - 1.2'00)]; ••• a'100

can be chosen uniformly from [(299_1).2'00 +1, 299 .2'°°]; and

w can be chosen uniformly from [2, m-2] and then repeatedly di-

vided by the greatest common divisor of wand m, to yield the

value of w that is actually used.

These choices ensure that (6.8) is met and that an op-

6/4/79 Chapter VI Page 66

THE TRAPDOOR KNAPSACK

ponent has at least 2100 possibilities for each parameter and

hence cannot search over even one of them. Note that each a.
1

will be pseudo-randomly distributed between 1 and m-1 and hence

will require a 202 bit representation. S will require a 209

bit representation, so there is a 2.09: 1 data expansion from x

to S.

6/4/79 Chapter VI Page 67

THE TRAPDOOR KNAPSACK

3. An Iterative Method

This section discusses techniques for improving the secu-

rity and utility of the basic methods.

In the first method we transformed a hard and apparently

very difficult knapsack problem, ~. into a very simple and

easily solved knapsack problem, ~', by means of the transforma-

tion:

-1 a ' . = w ·a. mod m
1 1

(6.15)

We could solve a knapsack invol ving ~ because we could solve a

knapsack involving ~'. Notice, though, that it does not matter

why we are able to solve knapsacks involving ~', all that

matters is that we can solve them. Rather than requiring that

~' satisfy (6.1), we could require that a ' be transformable

into a new problem, ~", by the transformation:

-1 a I I. = w'. a I. mod m I
1 1

(6.16)

where the new problem, ~", satisfies (6.1), or is otherwise

easy to solve. Having done the transformation twice, there is

no problem in doing it a third time. That is, we select an a"

which is easy to solve, not because it satisfies (6.1), but be-

cause it can be transformed into ~"', which is easy to solve,

by:

-1 a I I I. = W I I • a I '. mod m I ,
1 1

(6.17)

It is clear that we can repeat this process as often as we

wish.

With each successive transformation, the structure in the

6/4/79 Chapter VI Page 68

THE TRAPDOOR KNAPSACK

publicly known vector, ,!, becomes more and more obscure. In

essence, we are encrypting the simple knapsack vector by the

repeated application of a transformation which preserves the

basic structure of the problem. The final result,! appears to

be a collection of random numbers. The fact that the problem

can be easily solved has been totally obscured.

The effect of repeating the process several times is very

different from that obtained with certain ciphers, such as a

simple substitution. A simple substitution cipher is not

strengthened by repetition because the composition of two sub-

stitution ciphers is yet another substitution cipher. The

(w,m) transformations do not have this closure property. The

following example shows that the repetition of two (w,m)

transforms i.s not in general equivalent to a single (w,m)

transform.

If w = 3, m = 89, w' = 17, m' = 47, and .!" = (5,10,20)

t.hen a' = <38,29, 11) and a = (25, 87,33) • Assume there ex ists w

and m such that

a = w • a" mod m

Then a 1 = 25 and a"1 = 5 implies that

25 = w • 5 mod m

From this we have

2 • 25 = w • 2 • 5 mod m

or

(6.18)

(6.19)

(6.20)

50 = w • 10 mod m (6.21)

But now the relation a2 = 87 and a"2 = 10 implies that

6/4/79 Chapter VI Page 69

.LHE TRAPDOOR KNAPSACK

,..
87 = w • 10 mod m (6.22)

,..
so 87 = 50 mod m, or 37 = 0 mod m, which implies that m = 37.

Equation (6.19) then becomes
,..

25 = m • 5 mod 37 (6.23)
,..

so w = 5. But if w = 5, and m = 37, then equation (6.18) for

a3 = 33 and a"3 = 20 becomes

33 = 5 • 20 mod 37 (6.24)

or 33 = 26 mod 37, a contradiction. We conclude that no such w

and m can exist.

The original, easy to solve knapsack vector can meet any

condition, such as (6.1) which guarantees that it is easy to

solve.

It is important to consider the rate of growth of ,!, be-

cause this rate determines the data expansion involved in

transmitting the n bit vector x as the larger quantity S. The

rate of growth depends on the method of selecting the numbers

but, with n = 100, each a i need be at most 7 bits larger than

the corresponding a'i' each a'i need be at most 7 bits larger

than a"i' etc. etc. Each successive stage of the transforma

tion need increase the size of the problem by only a small,

fixed amount. Repeating the transformat·ion 20 times will add

at most 140 bits to each a i • If each a i is 200 bits long to

begin with, then they need only be 340 bits long after 20

stages, and S is representable in 347 bits. The data expansion

is then only 3.47:1.

6/4/79 Chapter VI Page 70

THE TFAPDOOR KNAPSACK

4. Compressing The Public File

As described above, the Ith user must place his trap door

knapsack vector, ~(I), in a public file. The Jth user can then

look up ~(I), and send a message.! to I, hidden as S = a{I) *
x. To avoid storing the rather large vector ~ (I), J could ask

I to transmit a{I) to him. But, unless J has some method for

testing ~(I), user K might fool J by sending him ~(K), and say

ing it was a{I). J would then mistakenly tell all his secrets

to K. A method is needed for J to convince himself that he was

really sent a{I). With a public file, each user can make one

personal appearance when depositing his vector and, after so

identifying himself to the system, he could identify (authenti

cate) himself to any user by his ability to decipher messages

hidden with his vector. The file itself must be protected, but

this is relatively easy because only write protection is need

ed.

To preserve this authentication benefit of the public

file, but to reduce its size(20 or more kilobits per user) we

suggest storing a 100 bit one-way hash total, h[~{r)], instead

of a(I) itself. When J receives a(I) from I he computes

h[a{I)] and checks this against I's value stored in the public

file. The hash function, h, must be a one-way function [6],

[38], [1], [28] so that K cannot generate a new vector a{K)

such that h[a{K)] = h[{~{I)], without having to perform a com

putationally impossible feat.

6/4/19 Chapter VI Page 11

THE TRAPDOOR KNAPSACK

Allowing 200 bits for storing the user's name and address,

(or "phone number"), the public file now contains 300 bits, in

stead of over 20 kilobits, per user. A system with a million

users requires a 300 million bit,. instead of a 20 billion bit,

public file. Transmission costs are comparable for both im

plementations.

A 100 bit number can be coded as 20 alphanumeric charac

ters, which is small enough to fit in a phone book. A typical

entry would look like this:

Joe Smith •••••• 497-1573

KSDJR E6K65 3GFVM OMK4K

The extra entry, KSDJR E6K65 3GFVM OMK4K, is the one-way hash

total of Smith's trap door knapsack vector, !.(Smith). With

this information, we can call up Smith, and hold a secure

conversation with him, which no one else can understand. We do

not need to have met Smith previously to know we are talking

with him or for him to know he is talking with us.

Transmitting 20 kilobits on a high speed, 50 kbps link,

takes 0.4 second, but on a low speed, 300 bps I ink, it takes

over a minute. The transmission time can be reduced by a fac

tor of 5, to about 4 kilobits, which takes less than 15 seconds

to transmit at 300 bps, by cutting the number of a i to n=20.

The vector .!' however, now has only 20 binary elements, which

is small enough to allow solution by exhaustive search. To

maintain security, the information in the.! vector must be in

creased to about 100 bits, while keeping n = 20. This can be

6/4/79 Chapter VI Page 72

THE TRAPDOOR KNAPSACK

done by allowing each element, x., to take on values in the set
1

{0,1,2,3, ••• ,31}, instead of just in {0,1}. Specifying each xi

takes 5 bits, and specifying the whole vector x takes 100 bits.

Equation (6.1) must now be modified to

i-1

a i > 31 • L a j

j=1

(6.25)

If n is reduced to 1 and the single element of the ~ vec-

100 tor assumes a value in {0,1,2, ••• 2 -1}, then the system is

easily broken because

x = Sia (6.26)

When n=2, the system can also be broken easily, by an a1-

gorithm similar in spirit to the greatest common divisor a1go-

rithm. It seems that small values of n weaken the system, and

further research is needed to determine how small n can be,

while still preserving security. The value n = 20 suggested

above must be treated with suspicion until an adequate certifi-

cationa1 study is conducted.

6/4/79 Chapter VI Page 73

~HE TRAPDOOR KNAPSACK

5. Signatures

As discussed in [6], the need for a digital equivalent of

a written signature is a major barrier to the replacement of

physical mail by teleprocessing systems. Usual digital authen

ticators protect against third party forgeries, but cannot be

used to settle disputes between the transmitter and receiver as

to what message, if any, was sent. A true digital signature

allows the recipient to prove that a particular message was

sent to him by a particular person. Obviously, it must be im-

possible for the recipient to alter the contents of the message

and generate the corresponding signature, but it must be easy

for him to check the validity of a signature for any message

from any user. A digital signature can also be used to gen-

erate receipts. The recipient signs a message saying, "I have

received the following message: TEXT." This section describes

how trap door knapsacks might be used to generate such signa

tures and receipts.

If every S in some large fixed range had an inverse image

x then it could be used to provide signatures. When the Ith

user wanted to send the message m he would compute and transmit

x such that a(I) * x = m. The recipient could easily compute m

from x and, by checking a date/time field (or some other redun

dancy in m), determine that the message was authentic. Because

the recipient could not generate such an ~ he saves x as proof

that the Ith user sent him the message m.

6/4/79 Chapter VI Page 74

THE TRAPDOOR KNAPSACK

This method of generating signatures can be modified to

work when the density of solutions (the fraction of S between 0

and ~ a i which have solutions to x * ~ = S) is less than '.

provided it is not too small. The message m is sent in pla1n-

text form. or encrypted if eavesdropping is a threat. and a se-

quence of one-way functions [6J. [38J. [7J. [28J y, = F,(m). Y2

are computed. The transmitter then seeks inverse

images for y1. y2 •••• until one is found and appends the

corresponding ~ to m as a signature. The receiver computes y =

a * x and checks that y is equal to Yk with k not too large.

for example at most 10 times the expected value of k.

or

The sequence of functions F.(·) can be as simple as;
1

F. (m) = F(m) + i
1

F. (m) = F(m+i)
1

(6.20a)

(6.20b)

where F(·) is a one-way function. It is necessary that the

range of F(·) have at least 2100 values to foil trial and error

attempts at forgery. If the message is much longer than '00

bits. the expansion caused by the addition of a 100 bit authen-

tication field is unimportant.

If the trap door knapsack vector were generated as sug-

gested at the end of section 2. the solution density would be

less than '/(2 100). and over 2100 Yk would have to be tried. on

the average. before one with a solution was found. It is pos-

sible. however. to use the iterative method of section 3 to ob

tain a solution density of approximately 1/(10~) with two

6/4/79 Chapter VI Page 75

THE TRAPDOOR KNAPSACK

iterations or 1/(106) with three iterations, when n = 100.

First, a knapsack vector ~" with a solution density near 1 is

selected. If ~" = (1,2,4,8, •.. ,299) then the solution density

is 1, but increasing some of the larger a"i need not greatly

reduce the solution density. For example,

(1,2,4,8,17,35.68,142) has a solution density of .92 and still

satisfies (6.1). Such choices may not be necessary, but they

provide an additional margin of safety at almost no additional

cost.

After selecting ~' " parameters m' and w' are chosen such

that m' > a" i and w-', exists modulo m'. The weak trap

door knapsack vector

a'=w'·a" mod m' (6.27)

is then computed. New parameters m > a'. and w (wi th w 2: -1
- 1

eXisting mod m) are chosen, and the more secure trap door knap-

sack vector

a = w • a' mod m (6.28)

is computed. The process can be iterated more than twice to

obtain the final vector, ,!, but the solution density typically

decreases by a factor of n/2 with each iteration. When used

for hiding information this decrease is of little importance,

but when used for signatures, several iterations are all that

can be afforded because of the need for a high solution densi-

ty. With so few iterations, it is possible for two adjacent a i

to be in the same ratio (usually 2: 1) as they were in the ~

vector. This weakness can be overcome by adding multiples of

6/4/79 Chapter VI Page 76

THE TRAPDOOR KNAPSACK

m' (or m) to a subset of the a'i (or a i) which suffer from this

problem. This decreases the solution density somewhat, and ac

counts for our 1/(104) and 1/(106) estimates for two and three

iterations when n = 100.

A small example is again helpful in illustrating the

method. Starting with

~" = (1,2,4,8,17,35,68,142) (6.29)

whose components sum to 277, we choose m' = 291 and w' = 176

(-1
w' = 167), resulting in

~' = (176,61,122,244,82,49,37,257) (6.30)

The second, third and fourth components are in the ratio of 2:1

which can be hidden by adding m' to the third component to ob-

tain the new vector

a' = (176,61,413,244,82,49,37,257) (6.31>

whose components sum to 1319. Choosing m = 1343, w = 498 (w-1

= 925) yields

~ = (353,832,195,642,546,228,967,401) (6.32)

whose components sum to 4164 • The density of solutions using a

is 256/4164 = .061 so approximately 16 attempts are needed, on

the average, to obtain a signature. This agrees well with the

2 2 estimated range of n /4 = 16 to n = 64.

The density of solutions can be increased by restricting

the Yk to I ie near the midd Ie of the range (0, ~ a .), say L-l

between 1000 and 3000 in this example. The law of large

numbers indicates that for most .!' the sum a * x will lie in

this range.

6/4/79 Chapter VI Page 77

THE TRAPDOOR KNAPSACK

Shamir [43] has developed a different method of using the

knapsack problem to obtain signatures.

6/4/79 Chapter VI Page 78

THE TRAPDOOR KNAPSACK

6. Discussion

We have shown that it is possible to construct trap door

knapsack problems and that information and signatures can be

hidden in them for transmission over an insecure channel. Con

ventional cryptographic systems also can hide information and

authenticators during transmission over an insecure channel,

but have the disadvantage that first a "key" must be exchanged

via courier service or some other secure means. Also, in con-

ventional cryptography, the authenticator only prevents third

party forgeries and cannot be used to settle disputes between

the transmitter and receiver as to whether a message was actu

ally sent.

We have not proved that it is computationally difficult

for an opponent who does not know the trap information to solve

the problem. Indeed, proofs of security are not yet available

for normal cryptographic systems, and even the general knapsack

problem has not been proved difficult to solve. The theory of

computational complexity has not yet reached the level of

development where such proofs are feasible. The best published

algorithm for solving the knapsack problem is exponential, tak

ing 0(2n/2) time and space [10 J. Schroeppel [33, unpublished]

has devised an algorithm which takes 0(2n/2) time and 0(2n/4)

space.

Faith in the security of these systems must therefore rest

on intuition and on the failure of concerted attempts to break

6/4/79 Chapter VI Page 79

THE TRAPDOOR KNAPSACK

them.

Attempts to break the system can start with simplified

problems (e.g. assuming m is known) (see chapter VII section

5.) If even the most favored of certificationa1 attacks is un

successful, then there is a margin of safety against cleverer,

wealthier, or luckier opponents. Or, if the favored attack is

successful, it helps establish where the security really must

reside.

As noted, the techniques suggested in this chapter gen

eralize to xi in the set {0,1,2,3, ••• ,Nl. The advantages and

weaknesses of such systems deserve further study.

Recently, Rivest, Shamir, and Ad1eman [31] have proposed

another public key cryptosystem, which yields signatures more

directly because the density of solutions in their problem is

1. Their system also requires a smaller key (apparently 600

bits versus 20 ki10bits); but is significantly slower. Neither

system's security has been adequately established but, when

iterated, the trap door knapsack appears less likely to possess

a chink in its armor. When used for obtaining signatures, the

trap door knapsack appears to be the weaker of the two. Both

public key systems clearly need further certification and

study.

6/4/79 Chapter VI Page 80

THE TRAPDOOR KNAPSACK

7. Footnote

Other definitions of the knapsack problem exist in the

literature [10], [11J, [31J. The definition used here is

adapted from Karp [13]. To be precise, Karp's knapsack problem

is to determine whether or not a solution ~ exists, while the

corresponding cryptographic problem is to determine what x is,

given that it exists. The cryptographic problem is not NP

complete, but is just as hard as the corresponding NP-complete

problem. If there is an algorithm for solving the cryptograph

ic problem in time T(n), i.e., for determining ~ given that it

exists, then we can determine whether or not an x exists in

time T(n), Le., solve the corresponding NP-complete problem.

If the algorithm determines ~ in time T(n), then some ~ exists.

If the algorithm does not determine ~ in time T(n), or deter

mines an incorrect x --which is easily checked-- then no such x

exists.

6/4/79 Chapter VI Page 81

VII. HOW SECURE IS THE TRAPDOOR KNAPSACK?

1. Introduction

Although the knapsack problem can be used as the basis of

a public key cryptosystem, a closer investigation of its secu

rity is needed in order to select the size and exact type of

trapdoor knapsack to use. This chapter is a study of the knap

sack problem from several perspectives, in an attempt to deter

mine how secure it is, and what type of trapdoor knapsack is

most sui table for actual implementation. Besides discussing

the best known algorithms for solving the knapsack problem, and

for solving special cases of the trapdoor knapsack problem, it

also gives direct reductions of Boolean circuits to the knap

sack problem. (The problem of Boolean circuits has already

been shown to be NP-complete. As a byproduct of this reduction

we show that if DES [24] is secure, so are general knapsacks

with n = 10,000.) The proofs presented are accessible to anyone

with a modest knowledge of Boolean circuit theory, and require

no theoretical background, (in particular, no knowledge of NP

complete problems is assumed.) They can serve to demystify com

plexity theory as applied to the knapsack problem.

There are two aspects to the complexity of the knapsack

problem. First, does there exist a method of solving the trap

door knapsack which cannot solve the general knapsack problem?

That is, is the trapdoor knapsack problem easy to solve even

though the general knapsack problem is NP-complete and there-

6/4/79 Chapter VIr Page 82

HOW SECURE IS THE TRAPDOOR KNAPSACK?

fore presumably hard to solve? Secondly. what is the complexi

ty of the general knapsack problem? Do there exist unusually

efficient algorithms for solving the knapsack problem? Do

there exist algorithms which will rapidly solve some knapsack

problems? This chapter first attempts to give a better idea of

the complexity of the general knapsack problem. both by consid

ering the most efficient algorithms known for its solution. and

by examining direct reductions of Boolean circuits to the knap

sack problem. It will then examine some algorithms which can

efficiently break certain specialized cases of the trapdoor

knapsack problem.

6/4/79 Chapter VII Page 83

HOW SECURE IS THE TRAPDOOR KNAPSACK?

2. The Knapsack Problem

The knapsack problem is: given an integer S and an integer

vector a = a 1, a 2 , a 3 , ••• an find a vector ~ = x1 ' x2 '.·· xn

where x. is in {O, 1} such that S = x * ~, (where n* n denotes
1

dot product.)

Karp [13] showed that this problem is NP-complete. The

best published algorithm for solving this problem requires 2n/2

operations and 2n/2 memory [10 J. This algorithm is simpl e in

nature: all possible sums involving a 1, a 2 , ••• an/2 are gen

erated, and the 1 ist of 2n/2 possible sums is sorted. Then,

all possible sums involving an/2+1 , an/2+2 , an are gen-

erated, each sum is subtracted from S, and the resulting list

of numbers is sorted. If a number in the first list matches a

number in the second 1 ist, then a sol ut ion ex ists and can be

readily computed. (An unpublished algorithm which runs in time

2n/2 and in space 2n/4 has been discovered by Schroeppel [33]).

The proof by Karp that this problem is NP-complete is

elegant and concise, but gives little hint as to whether the

best known algorithms (mentioned above) are very close to the

best possible algorithms or whether much better algorithms are

possible. A more fundamental problem with the use of the

theory of NP complete problems is that the nondeterministic po-

lynomial time Turing machine was reduced to the knapsack prob-

6/4/79 Chapter VII Page 84

HOW SECURE IS THE TRAPDOOR KNAPSACK?

lem, but the actual complexity of a nondeterministic Turing

machine has not been investigated closely enough for crypto

graphic purposes: in cryptography, constant factors are VERY

important.

Rather than reduce a non-deterministic Turing machine to

the knapsack problem, it is more appropriate to reduce Boolean

circui ts to the knapsack problem. The rationale for this is

simple: modern cryptographic systems are actually built out of

Boolean circuits, i.e., "and," "or" and "not" gates. Crypto

graphic systems built out of arbitrary combinations of -such

logical building blocks have already been certified. As a

consequence, reducing Boolean circuits to the knapsack problem

directly will not only let us infer that the knapsack problem

is NP-complete, it will also let us draw some inferences about

a lower bound on n needed for a secure system. If it is possi

ble to embed the problem of cryptanalyzing an already certified

cryptographic system into a knapsack problem with n = 10, 000,

then we can safely infer that there is no uniformly fast algo

rithm which can solve knapsack problems with n = 10,000.

Furthermore, the details of the actual reduction might give us

some feel for the security of the knapsack problem.

We first extend the problem of Boolean circuits by includ

ing a multi-input multi-output "gate," which is intended to

model the ROM-based S-boxes (substitution boxes) found in many

modern cryptographic functions. We define a "(k,m)S-box" as a

device with k Boolean inputs, and m Boolean outputs, where the

6/4/79 Chapter VII Page 85

HOW SECURE IS THE TRAPDOOR KNAPSACK?

function which determines the output from the input is arbi

trary. As an example, figure 1 shows the truth table for a

<3, 2)S-box.

input output

000 01

001 11

010 00

011 10

100 11

101 11

110 01

111 00

Figure 1

The reader should notice that "and" and "or" gates are

just (2,1)S-boxes, and a "not" gate is just a (1,1)S-box.

These devices will therefore not be considered separately.

In order to embed a modern cryptographic function into the

knapsack problem, it is sufficient if we can embed arbitrary

(k,m)S-boxes and their interconnections. This can be done

easily, and the (3,2)S-box of figure 1 is shown in figure 2 em

bedded in a knapsack problem with p = 13. The {ail and Shave

been chosen so that exactly 8 .! vectors satisfy S = a * x and

these 8 vectors specify the data of figure 1 under the follow-

6/4/79 Chapter VII Page 86

HOW SECURE IS THE TRAPDOOR KNAPSACK?

ing interpretation.

a 1 = 000--01---------1

a2 = 001--11---------1

a3 = 010--00---------1

a4 = 011--10---------1

a5 = 100--11---------1

a6 = 101--11---------1

a7 = 110--01---------1

a8 = 111--00---------1

input a9 = 100--00---------0

input 2 a 10 = 010--00---------0

input 3 a 11 = 001--00---------0

output a 12 = 000--10---------0

output 2 an = 000--01---------0

sum s = 111--11---------1

Figure 2

The a. are shown in binary. and "-" is used for zero's
1

which are not structurally important. but which are used only

for spacing and to prevent carries between the three structural

fields during addition of the ai • x9 • x10 • and x11 represent

the 3 input values to the S-box in complementary notation. If

6/4/79 Chapter VII Page 87

HOW SECURE IS THE TRAPDOOR KNAPSACK?

X9 is 0, then input 1 to the S-box is a 1. If x9 is a 1, then

input 1 is a O. Similarly for x10 and x11 • The outputs are

represented, again in complementary logic, by x12 and x13 • The

variables x1 through xa are not interpreted, they are part of

the "internal workings" of this S-box representation. The fi

nal "1" in a 1 through aa coupled with the requirement that S

end in 1 guarantees that only one of x1 through xa can be a 1,

all the rest must be o's.

Perhaps the best explanation of this S-box is to work

through an example of what happens when a given 3-bit input is

specified as part of the ~ vector, and how it eventually pro

duces the correct 2-bit output, also as part of the x vector.

Figure 1 shows that on input 110 this S-box must produce

output 01. Input 110 corresponds to x9 = 0, x10 = 0, and x11 =

1, and output 01 corresponds t.o x12 = 1 and x13 = O. To force

a7 , which corresponds to this input-output pair, to be included

in the sum we set the first three bits of S to 111. Only one

of x1 through x8 can be a 1, and the Xi selected must make the

first 3 bits of the sum equal 111. Because carries are

prevented between the three structural fields, the only possi

ble choice is x7 = 1, and the rest of x1 through xa are equal

to O. Now, x7 has a two-bit "output" section, which is the

correct output (01) for the original input 110. By choosing

the second field in S to be 11 we force x12 and x13 to assume

the correct out put in complementary notation (10) in a manner

analogous, but precisely reversed, from the manner in which the

6/4/79 Chapter VIr Page 88

HOW SECURE IS THE TRAPDOOR KNAPSACK?

input selected x7 in the first place.

The reader should note that a, through a8 in figure 2 are

nearly exact copies of the S-box shown in figure " the only

change being the addition of structurally unimportant D's, in

dicated with "-". The last structural field is the constant,

,. Each of a9 through a" has a single bit, surrounded by 0

bits to form an "identity matrix" in the first structural

field. The same is true for a'2 through a 13 in the second

structural field.

The knapsack problem in figure 2 models the (3,2)S-box in

figure 1, but the details of how to interconnect two or more

S-boxes into a single circuit must still be developed. For

simplicity, we do this with an example using two identical S

boxes. These can be represented by a single knapsack with n =

26, and of twice the "wid th" as the original knapsacks with six

structural fields. The first three fields are used only for a,

to an to represent the first S-box. The second three fields

are only used for a'4 through a26 to represent the second S-

box. By including a non-structural buffer of O's between

fields three and four, any.! vector which solves the knapsack

problem is consistent with the input/output relation of both

S-boxes. Figure 3 shows the result of applying this procedure

to generate two non-interconnected S-boxes identical to the S

box of figures' and 2.

To interconnect an output from one S-box to an input of

the other S-box, we must force the associated xi and Xj to be

6/4/79 Chapter VII Page 89

HOW SECURE IS THE TRAPDOOR KNAPSACK?

equal to each other. To connect input 1 of the first S-box (a9

in figure 3) to output 2 of the second S-box (a26 in figure 3)

we must force x9 to equal x26 • This is done by making x9

identical to x26 ' i.e., a26 is removed, and a new a9 is defined

to be the sum of a9 and a26 • This is illustrated in figure 4.

In general, to connect ai with a j' create a j = a j + ai' and

delete the old 8 i •

As an example, if we wished to have two <3,2)S-boxes ex

actly like the one shown in figures 1 and 2, and to intercon

nect the second output of one with the first input of the oth

er, the result would look like figure 3.

6/4/79 Chapter VII Page 90

input 1
input 2
input 3

output 1
output 2

input 1
input 2
input 3

output 1
output 2

sum

6/4/79

HOW SECURE IS THE TRAPDOOR KNAPSACK?

a 1 = 000--01---------1
a2 = 001--11---------1
a3 = 010--00---------1
a4 = 011--10---------1
a5 = 100--11---------1
a6 = 101--11---------1
a7 = 110--01---------1 ,-----------------
aa = 111--00---------1 :------------------

= 100--00---------0:-----------------
= 010--00---------0:-----------------
= 001--00---------0:------------------

a 12 = 000--10---------0:-----------------
a 13 = 000--01---------0:------------------

= -----------------:-000--01---------1
= -----------------'-001--11---------1
= ----------------- -010--00---------1
= ----------------- -011--10---------1
= ----------------- -100--11---------1
= ----------------- -101--11---------1
= ----------------- -110--01---------1
= ----------------- -111--00---------1

a 22 = -----------------:-100--00---------0
a 23 = -----------------:-010--00---------0
a 24 = -----------------:-001--00---------0

a 25 = -----------------:-000--10---------0
a 26 = -----------------:-000--01---------0

s = 111--11----------:-111--11---------1

Figure 3

Chapter VII Page 91

input 1
(and also
output 2)
input 2
input 3

output 1
output 2

input 1
input 2
input 3

output 1

sum

6/4/79

HOW SECURE IS THE TRAPDOOR KNAPSACK?

a 1 = 000--01---------1 ------------------
a2 = 001--11---------1 ------------------
a3 = 010--00---------1 ------------------
a4 = 011--10---------1 ------------------
a5 = 100--11---------1 ------------------
a6 = 101--11---------1 ------------------
a7 = 110--01---------1 ------------------
a8 = 111--00---------1 ------------------

a9 = 100--00---------01------01---------
a 10 = 010--00---------01-----------------
a 11 = 001--00---------01------------------

a 12 = 000--10---------01-----------------
a 13 = 000--01---------01------------------

a 14 = -----------------1-000--01---------1
a 15 = -----------------1-001--11---------1
a 16 = -----------------1-010--00---------1
a 17 = -----------------1-011--10---------1
a 18 = -----------------1-100--11---------1
a 19 = -----------------1-101--11---------1
a20 = -----------------1-110--01---------1
a 21 = -----------------1-111--00---------1

a 22 = -----------------1-100--00---------0
a 23 = -----------------1-010--00---------0
a 24 = -----------------1-001--00---------0

a 25 = -----------------1-000--10---------0

s = 111--11----------1-111--11---------1

Figure 4

Chapter VII Page 92

HOW SECURE IS THE TRAPDOOR KNAPSACK?

From figure 2 it is seen that a (k,m)S-box can be imbedded

in a knapsack of size 2k+k+m. Outputs of one S-box will usual

ly serve as inputs to other S-boxes, so the size of the knap

sack which represents the interconnection of several S-boxes

will be somewhat reduced from the sum of the sizes of the knap

sacks representing the isolated S-boxes.

To model cryptanalysis, note that in a known plaintext at

tack, the key is the only free input to the circuit because the

plaintext and ciphertext are fixed. (The known plaintext and

ciphertext val ues can be obtained in the circuit by several

methods, the easiest to explain is to use (1,1) S-boxes whose

outputs are independent of their inputs.) Any .! vector which

solves the resultant knapsack problem specifies the key in com

plementary notation. Solving the knapsack problem is thus at

least as hard as cryptanalysis of the system modeled by the

Boolean circuitry.

It is now possible to embed the problem of cryptanalysis

of a modern encryption function into the knapsack directly. As

an example we consider embedding the National Bureau of Stan

dards Data Encryption Standard (DES) [24]. Although there is

controversy about the security of the DES [5], [15], there is

little doubt that an encryption function with an equivalent

complexity could be made secure. Because the embedding we

describe could be used to embed any encryption function of com

parable complexity into the same size knapsack problem, the

security of the DES is not an issue.

6/4/79 Chapter VII Page 93

HOW SECURE IS THE TRAPDOOR KNAPSACK?

We shall not consider the DES algorithm in any great de

tail, except to estimate the number and type of S-boxes it con

tains. It has 8 S-boxes, but requires 16 "rounds" or itera

tions. That is, the DES is a clocked sequential circuit which

requires 16 clock periods to compute a result. Because we can

model only combinatorial circuits, and not sequential circuits,

we must "unroll" the 16 rounds into a single combinatorial cir

cui t 16 times longer than the circuitry required for a single

round. We shall therefore compute how large a knapsack would

be required to model a single round of the DES algorithm, and

then multiply by 16.

There are 8 (6,4)S-boxes involved in one round. In addi

tion, there are 80 (2,1)S-boxes used for exclusive-oring. Of

these, 48 are used to ex-or the key with the data, and 32 to

ex-or the two halves of the data. The result is 8 • (26 + 6 +

4) + 80 • (22 + 2 + 1) = 1152. To continue this for 16 rounds

would require a knapsack with n = 18432.

This estimate is conservative (too large) for two major

reasons: First, the (2,1)S-boxes are used for exclusive-or

gates, and exclusive-or gates can in fact be implemented in a

knapsack of size n = 4, rather than n = 7. Second, this counts

the input of one S-box which is also the output of a preceding

S-box twice, again inflating the size of knapsack needed. If

both of these factors are taken into account, the size of the

knapsack required shrinks to n = 11,264. A few more improve

ments can yield an n of about 10,000, but further improvements

6/4/79 Chapter VII Page 94

HOW SECURE IS THE TRAPDOOR KNAPSACK?

become more difficult at this point. We shall use the estimate

n = 10,000 for the rest of the chapter.

The interpretation given to this fact (that the DES can be

imbedded in a knapsack of size n = 10,000) is quite straight

forward: should an algorithm ex ist which can efficiently and

uniformly solve

DES --and all

kna psack probl ems wi th n = 10,000, then the

other encryption functions of similar

complex i ty-- can be broken. Because the second statement is

highly implausible, it is also highly implausible that any fast

algori thm will be found for solving arbitrary knapsacks with

n=10,000.

The best known algorithm for solving the knapsack problem,

coupled with the largest computer that can be imagined will be

totally unable to solve knapsack problems with n = 1000. Even

solution of knapsacks with n = 100 will be prohibitively expen

sive with today's technology.

Even if we accept n = 100 as a lower bound and n = 10,000

as an upper bound on the size of knapsack problem necessary for

a secure system, there is still a great deal of difference

between the two. Fortunately, the upper bound seems very

loose. A knapsack with n = 10,000 can actually embed any DES

like encryption function with 16 • 8 = 128 (6,4)S-boxes, as

well as some auxiliary logic.

6/4/79 Chapter VIr Page 95

HOW SECURE IS THE TRAPDOOR KNAPSACK?

3. Double Sum is Easy to Solve

An apparently effective method for reducing the value of n

in the trapdoor knapsack (thus reducing the size of the public

enciphering key a) is to allow the x. to take on values in the
- 1

range {0,',2,

n = , 00 and B =

it produces n =

S = a 1 • x 1

P} instead of the range {O,'}. Starting with

(the usual case) and pushing this to its lim

and E = 2'00_, with

as the enciphering operation. Cryptanalysis is easily done by

one division. The case n = 2 results in the double sum problem

defined as: given integers S, a" a2, and P, find integers x,

and x2 such that

S =

and

We may assume that GCD(a 1,a2) =

(7. ,)

<7.2)

since otherwise we can

compute their GCD and divide a l' a2, and S by it to get a new

problem with GCD(a"a 2) = 1. Then we can use the GCD algorithm

to generate numbers y, and Y2 such that

~ultiplying this equation by S gives

We also have

6/4/79 Chapter VII Page 96

HOW SECURE IS THE TRAPDOOR KNAPSACK?

If we add multiples of the second equation to the first,

we will still have an equation which satisfies (1.'), and be

cause a, and a2 are relatively prime, it generates all possible

solutions to (1.').

The solut ion must satisfy (1.'), and x, can be expressed

in the form

x, = k • a2 + r

which gives

S = a, • (k . a 2 + r) + a2 . x2

<1.3)

<1.4)

Furthermore, the value of r can be computed from

S • y, = x, = k • a2 + r mod 8 2

or

We must satisfy x, < P. We must also satisfy (1.') and

(1.2), which implies x, < (S+')/a,. If x, > (S+')/a" then x2

< 0, contradicting (1.2). If we let min = min(B, (S+')/a,)

then these t.wo conditions reduce to x, < min. If we now select

the largest allowable value of x" which will generate the

smallest possible value of x2 , either it is a solution, or no

solution exists. Using equation (1.3), we have

k • a2 + r = x, < min

or

k • a2 < min - r

or

6/4/19 Chapter VIr Page 91

HOW SECURE IS THE TRAPDOOR KNAPSACK?

k < (min - r)/a2

so the largest allowable value of k will be

k = (min - r - ')/8 2

By truncating k to an integer, we obtain an exact solution

to (7.3), and generate a value for x,.

We now compute x2 , using the already obtained value of x"

and determine if x2 < B. If x2 < P, we have computed the solu-

tion. Otherwise, no solution exists.

To summarize:

614/79

, - a • y + a • Y2 -, 1 2

compute r = S . y, mod a2

compute min = min(b, (S+')/a,)

compute k = (min - r - ')/a 2

if k < 0, there is no solution

truncate k

compute x, = k • a2 + r

compute x2 = (S - a, . x,) 1 a2

if x2 < B then x is the solution

otherwise no solution exists

Chapter VII Page 98

HOW SECURE IS THE TRAPDOOR KNAPSACK?

4. What Value of n is Safe?

It is clear that n = 2 is not safe. At the present time,

al though we do not have a fully tested general algorithm for

solving problems with n = 3, the author believes that this is

also not sa fe. It is not clear whether n = 4 is safe, but

small values of n, i.e., less than 10, should certainly be

avoided at the present time. The author wishes to emphasize

that estimates about a "safe" value of n have a large subjec-

tive component. The only method of establishing that a partic-

ular selection of parameters for the trapdoor knapsack can be

relied on to provide a high level of security is to have a cer-

tificational attack on the system by individuals skilled in

cryptanalysis and the particular problem area. Closer investi-

gation of the parameter n in the generalized knapsack seems

justified before adopting a value for a particular system.

(Certificational attacks should optimally include the creators

of the system as one group. Those interested in initiating a

serious certification of the trapdoor knapsack should contact

the author.)

6/4/79 Chapter VII Page 99

HOW SECURE IS THE TRAPDOOR KNAPSACK?

5. How ~any Iterations of the Knapsack ~ Safe?

Although even the single iteration knapsack has not yet

been broken, it is the author's belief that at least two or

three iterations of the (w,m) transform are needed to produce a

margin of safety. The author would presently feel comfortable

with ten iterations, although, as mentioned before, such "feel-

ings" should be viewed with caution. A full certificational

attack by several expert.s would be preferable.

Work by the author, by Martin Hellman, and by Ad i Shamir

[unpublished] on the security of the single iteration trapdoor

knapsack indicates that revealing any ~ of the parameters al-

lows solution of the problem.

Taking the three cases in order, let us assume that in ad-

dition to the public vector~, our opponent learns a'in a sin-

gle iteration trapdoor knapsack. In this case, the following

equations hold:

a, • w = a, mod m

a • w = a' mod m 2 2

which in turn implies that

a • w • a' = a • w • a' mod m , 2 2 ,

6/4/79 Chapter VII Page 100

HOW SECURE IS THE TRAPDOOR KNAPSACK?

which together with GCD(w,m) = 1 implies

a • a' - a • a' = k • m
1 2 2 1

where k is an unknown integer.

The essential point of this computation is that we can

easily compute a multiple of m. By repeating this trick a few

times with other numbers from the trapdoor knapsack, we can

compute several different multiples of m. Taking their gcd

will then give us m, which can in turn be used to recover w.

If all we know is m, we can often recover w using a method

devised by Shamir [42]. The basic equations behind this method

are:

a 1 • w = ai mod m

a •
2 w = a2 mod m

which impl ies

mod m

But we can compute a 1/a2 mod m, which lets us rewrite the

equation as:

known

6/4/79

= a'/a' 1 2

Chapter VIr Page 101

BOW ~EClJPE IS THE TRAPDOOR KNAPSACK?

or again as

a' . known = a' mod m 2 1

Furthermore, we know that ai and a2 are very small com

pared with m. We therefore seek two numbers satisfying

n1 • known = n2 mod m

n1, n2 are small

and hope that these two numbers are ai and a2 CShamir [42J has

the details). In many cases, our hopes will be satisfied. In

particular, random function arguments imply that the sol ut ion

will be unique if lengthCai) + lengthCa2) < lengthCm).

Although it is fairly easy to pick m small enough to foil this

particular attack, it still indicates that m should be kept

secret to maintain security. Although m might not satisfy the

constraint given, it might still be possible to solve for a,

and a2 using a generalized attack with the first three elements

of the trapdoor knapsack.

-1 . Finally, if w 1S known, this allows ready computation of

-1 -1 -1 w • a 1, w • a2 and w • a ~ •
..J

These numbers are all equal

to a multiple of m plus the small numbers Crelative to m) ai,

a2 and 83, All we need do is compute a number which satisfies

these conditions, and we have recovered m.

Since there are three secret parameters in the single

6/4/79 Chapter VII Page 102

HOW SECURE IS THE TRAPDOOR KNAPSACK?

iteration trapdoor knapsack and making anyone public destroys

security, conservatism dictates using the iterated trapdoor

knapsack even though all three parameters are secret. Much as

product ciphers can build a strong encryption function by

iterating weak simple ciphers, so the iterated trapdoor knap

sack builds strength by iterating the (w,m) transform.

6/4/79 Chapter VII Page 103

HOW SECURE IS THE TFAPDOOR KNAPSACK?

6. Conclusion

The purpose of this chapter has been to give the reader a

better idea of the security of particular trapdoor knapsack

problems. It seems clear at this time that a trapdoor knapsack

with n = 1000, with 100 iterations, and with each number in the

a vector 5000 bits long should be totally secure. Reducing

these numbers to more practical values is essential before the

trapdoor knapsack is used in a real system.

6/4/79 Chapter VII Page 104

VIII. AN NP-COMPLETE CONVENTIONAL CIPHER

1. Introduction

It is possible to make a conventional cipher based on the

knapsack problem which is essentially NP-complete. Those

knowledgeable about the theory of NP-completeness might object

to the use of the term "tIP-complete" in these circumstances, so

the qualification "essentially" has been added. The precise

distinctions are more definitional than substantive and are ex

plained below.

It appears that the proof technique used here can be gen

eralized to other ciphers.

6/4179 Chapter VIII Page 105

AN NP-COMPLETF CONVENTIONAL CIPHER

2. The Basic Idea

It is possible to create a one way function based on the

knapsack problem by defining ~ to be the input to the function,

S to be the output from the function, and ~ = a" a2 , ••• an as

the function specification. This allows definition of the

function by

F(x) = s = x * a

(where * denotes dot product).

We can define a stream cipher [4J based on this:

and the deciphering process is just:

where ~ represents modulo two addition (exclusive or), ~ is de

fined to be the key and Pt , Ct , and F(~)t are all one bit quan

tities. Ct is the single bit of ciphertext transmitted at time

t; Pt is the single bit of plaintext generated by A at time t;

and F(~)t is the single bit of S needed to encrypt Pt at time

t.

6/4/79 Chapter VIII Page '06

AN NP-COMPLETE CONVENTIONAL CIPHER

The advantage of this definition is that the key, .!' is

the argument of a one way function. and should therefore be

difficult to determine.

To be useful, it must be possible to send indefinite

amounts of plaintext: P must be infinite. This implies S must

be infinite. This in turn implies that the a. must be i.nfin-
1

ite. (Notice that it does not imply.! is infinite.) Infinite

a. 's are trivial: they need only be generated as indefinite
1

streams, least significant bit first. For each index i in

{ 1 ,2, n}, A will transmit a. l' a. 2'
1. 1, a. t 1,

time t, A will transmit n + 1 bits: a 1,t, a 2 ,t, a 3,t

and Ct'

At

• •• an t' ,

A uses key.! to select a subset of the a i . A adds up the

subset of the a. to compute the sum, S. B knows .!. hence B can
1

also compute S. (Everyone knows ~. which is public knowledge.)

Because the a. are infinite in length, S will also be in-
1

finite in length. As the a i are transmitted, least significant

bit first, it will become possible for B to compute S, also

least significant bit first. That is, S will be a bit stream,

computable from the n bit streams a l' a 2 , •.• an' and the key

x.

6/4/79 Chapter VIII Page 101

AN NP-COMPLETE CONVENTIONAL CIPHER

This is illustrated in figure 1.

time t: 9 8 7 6 5 4 3 2

a 1 = 0 o 0 0 1 0 1 1 0 0

a2 = 1 0 1 0 1 001 0

a 3 = 1 0 0 0 1 1 0 0 0 0 0

an = •••• 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1

S =

P =

o 1 0 1 0 0 0 0

1 o 0 0 0

o 0

000

C = 000 0 0 0 0 0 0 0

Figure 1

E cannot learn.! without solving the knapsack problem but

it seems conceivable that E might be able to deduce some por

tion of S without ever knowing.!. In the following paragraphs,

this is shown to be impossible.

If we assume E attacks this cipher under a known plaintext

attack, then E knows St for t < the present time. This is be

cause

6/4/79 Chapter VIrI Page 108

AN NP-COMPLETE CONVENTIONAL CIPHER

In spite of this, E will not be able to compute St for any t >

the present time, even given the full values of the a i (which

extend indefinitely into the future) without also solving for

.!' and thus solving the knapsack problem. This can be proven

by contradiction.

Assume E can predict St for some t > the present time and

for any value of the a .• To determine if x. is a 0 or a 1, E
1 1

makes two predictions. E first predicts St' and then makes

another prediction St after complementing the single bit, ai,t.

If St i St' then xi must be a 1, otherwise it must be a O.

This proves that solving this cipher for even one bit of

unknown plaintext allows E to recover one of the xi. Repeating

this n times allows recovery of the x vector, thus solving the

knapsack problem.

Why is this cipher only "essentially" NP-complete? In

essence, the question is the distinction between the following

two problems:

Find .!' given that we know it exists.

Determine whether or not x exists.

The latter is the knapsack problem, and is NP-complete.

The former is not quite the knapsack problem, and I have been

calling it "essentially" NP-complete.

From a cryptographer's point of view there is not much

difference between these two problems. If an algorithm exists

6/4/79 Chapter VIII Page 109

AN NP-COMPLETE CONVENTIONAL CIPHER

that will find x in time Ten), then we can determine whether or

not ~ exists by running the algorithm for time Ten) and noting

whether it produces the correct ~ at the end of that time. If

it does produce the correct ~, then x ex ists. If it did not

find any ~ in that time, no ~ exists.

It can be argued that this "proof" is inadequate because

we have not taken into account the time required to compute T

itself. It is not the purpose of this chapter to provide air

tight theoretical definitions, simply to point out that such

theoretical considerations ex ist, but do not appear to be im

portant for cryptographic applications.

6/4/79 Chapter VIII Page 110

AN NP-COMPLETE CONVENTIONAL CIPHER

3. Conclusion

A conventional cipher which is essentially NP-complete was

given. This cipher, based on the knapsack problem, is the

first with this property known to the author.

6/4/79 Chapter VIII Page 111

IX. PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

1. Introduction

This chapter examines the ways in which public key systems

can be used and the special strengths they offer, by giving a

series of example protocols. Beyond providing recipes for

solving some specific problems, these examples are intended to

improve the reader's ability to judge other protocols and, when

faced with new problems, to synthesize new protocols.

The reader is assumed to be famil iar with the general

ideas behind public key cryptosystems, as described in [6 J.

[4].

For many of the following examples, we shall need the ser

vices of two communicants, called A and P, and an opponent E.

A and E will attempt to send secret messages and sign con

tracts, while E will attempt to discover the keys, learn the

secrets, and forge contracts. Sometimes, A will attempt to

evade a contract he signed with B, or B will attempt to forge

A's signature to a new contract.

A and B will need to apply one way functions to various

arguments of various sizes, so we define the one way function F

with the properties that:

6/4/79 Chapter IX Page 112

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

1) F can be applied to any argument of any size. F ap

plied to more than one argument is defined to be the

same as F applied to the concatenation of the argu

ments.

2) F will produce an output of fixed size (perhaps 100

bits)

3) Given F and x it is easy to compute F(x).

4) Given F and F(x) it must be impossible to determine

x.

5) Given F and x, it must be impossible to determine x'

i x such that F(x) = F(x').

For a more complete discussion of one way functions, see [7],

[38], [19] and chapter II.

6/4/79 Chapter IX Page 113

<.

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

2. Centralized Key Distribution

Centralized key distribution using conventional encryption

functions was the only reasonable method of handling key dis-

tribution in a multi-user environment before the discovery of

public key distribution methods. Only conventional encryption

functions need be used, which presently offers a performance

advantage. (The currently known publ ic key systems are less

efficient than conventional cryptographic systems. Whether or

not this will continue is not now known. Discovery of new pub-

lic key systems seems almost inevitable, and discovery of more

efficient ones probable.)

In centralized key distribution, A, B, and all other sys-

tem users somehow deposit a conventional cryptographic key with

a central key distribution center. Call X I S key kx, and let

C(key ,plaintext) be the ciphertext resulting from the conven-

tiona 1 encryption function. If A wishes to communicate with B,

then A picks a random key k' and computes y = C(kA,<k' ,"send

this key to B"» and sends it to the center along with his

-1
name. The center computes C (kA,y) = <k' ,"send this key to

B"> and then computes z = C(kp,<k' ,"this key is from A"» and

-1 sends this to B. B computes C (kE, z) = <k', "this key is from

A"> and uses k' in further encrypted communications with A.

This protocol is simple and requires only conventional en-

cryption functions. Needham and Schroeder [25] and Popek and

6/4/79 Chapter IX Page 114

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

Kline (27] have defended its use.

The major vulnerabil ity of this protocol is to both cen

tralized loss of security and centralized loss of function.

All of the eggs are in a central basket. Theft of the central

keys, or bribery of personnel at the central site will comprom-

ise all users of the system. Simil arly, destruction of the

central keys destroys the key distribution mechanism for all

users. In addition, even though A and B can communicate with

each other, if either of t.hem is unable to communicate with the

key distribution center they will not be able to establish a

secure key. In contrast, public key distribution will be seen

to continue to function when only two users are left, and only

the single communication path between them is functional. Pub

lic key systems are much more robust.

The security and reliability of centralized key distribu

tion can be increased by using two or more centers, each with

its own keys [6]. Destruction or compromise of a single center

will not affect the other center. If users always use several

keys --one from each center-- both to encrypt and decrypt mes

sages, then compromise of a single key (or a single center) has

no effect on user security. Only if all centers are comprom-

ised is the users' security compromised. In general, any

number of centers can be established; although practical con

siderations will usually dictate a small number, e.g., two to

five.

A system with multiple centers forces each user to estab-

6/4179 Chapter IX Page 115

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

1ish a key with each center. This increases cost, but also in-

creases security. There are two ways of modeling this increase

in security. In the first, we argue that the probability of

compromising one center is p, so the probability of compromis-

k ing k centers is p • If P is reasonably small, this model

predicts a rapid and dramatic increase in security as the

number of centers is increased. In the second model we argue

that if the cost of compromising one center is d dollars, then

the cost of compromising k centers is only k'd dollars. This

model predicts only a small increase in security as new centers

are added. The truth probably lies somewhere in between.

The centralized key distribution protocol does not fully

solve the key distribution problem. Some sort of key distribu-

tion method must be used between each user X and the center to

establish each kX' This problem is nontrivial because no elec-

tronic communications can be used for the transmission of kX'

and inexpensive physical methods, e.g., registered mail, offer

only moderate security. The use of couriers is reasonably

secure, although more expensive. Some implementations of pub-

1ic key distribution protocols do not require a secure channel

for transmitting individual keys. rather they only require au-

thentication of one (system) key or the root node in a tree au-

thentication system (see sections 5 and 6).

Centralized key distribution is more vulnerable to both

loss of security and loss of function than well designed public

key distribution systems. At the present time, it does provide

6/4179 Chapter IX Page 116

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

improved performance because conventional encryption functions

are more efficient (faster or require less memory) than public

key functions. In addition, certified conventional encryption

functions are widely available, but this is not true of public

key systems.

change.

6/4/19

The latter two situations can be expect.ed to

Chapter IX Page 117

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

3. Simple Public Key Distribution

This is the most basic application of public key systems

[6], [18], [20], [21], [31]. Its purpose is to allow A and B

to agree on a common key k without any prior secret arrange

ments, even though E overhears all messages. While public key

distribution systems which are not based on public key cryp

tosystems exist [6], [20], we describe the protocol in terms of

a public key cryptosystem. A randomly computes enciphering and

deciphering keys EA and DA, and sends FA to F (and inadvertent

ly E). B picks a random key, k, and transmits EA(k) to A (and

E). A computes DACEACk)) = k. A then discards both EA and DA,

and B discards EA. The key in future communications is k. It

is used to encrypt all further messages using a conventional

encryption function. Once A and B have finished talking, they

both discard k. If they later resume the conversation the pro

cess is repeated to agree on a new key k' .

This protocol is very simple, and has a great deal to

recommend it. First, no keys and no secret materials exist be

fore A and B start communicating, and nothing is retained after

they have finished. It is impossible for E to compromise any

keys either before the conversation takes place, or after it is

over, for the keys exist only during the conversation. Furth

ermore, if E is passive and does not actively interfere with

the messages being sent, then E will understand nothing and the

6/4/79 Chapter IX Page 118

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

conversation will be secure.

The disadvantage of this protocol is that E might actively

interfere with the exchange of keys. Worse yet, if E has con

trol of the channel, he can force a known k on both A and E.

All further messages encrypted with k can then be read by E.

All E need do is pretend to E that he is A, and pretend to A

that he is B. To do this, E blocks transmission of EA to E,

and substitutes EE. B will compute EE(k) and transmit it to A.

E will block this transmission, learn k by computing DE(EE(k))

= k and then send FA(k) to A. A will compute DA(EA(k)) = k as

usual. E knows k, and both A and B are none the wiser.

In spite of this disadvantage, the protocol is very useful

for two reasons. Passive eavesdropping, by itself, is a major

problem. In "The Codebreakers," the authori tati ve 1164 page

history of cryptography by David Kahn [12], the threat was from

passive eavesdropping in the vast majority of cases. Use of a

simple public key distribution protocol provides protection

from this attack, and also provides a positive guarantee

against lost or stolen codebooks, bribery or blackmail of code

clerks, and "practical cryptanalysis" by theft of keys. For

example, the major vulnerability of the U.S. telephone network

today is from technically sophisticated passive eavesdropping.

The Russians use their embassies and consulates in the U.S. to

house microwave receivers which listen to conversations carried

between telephone company microwave towers [36], [3]. They are

not jamming or altering phone calls; just listening.

6/4179 Chapter IX Page 119

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

Secondly, if the reader has a preference for any other key

distribution protocol which does not provide these blanket

guarantees against lost or stolen keys, then it is simple to

combine the readers preferred key distribution protocol with

the simple public key distribution protocol to obtain a hybrid

which offers the strengths of both. The problem of carelessly

lost keys, poor key security, theft of keys, and bribery of

clerks or janitors who have access to the key are not minor, as

history shows [12 J. A blanket guarantee against all passive

attacks is extremely comforting.

When guarantees of authenticity are also required, the

simple public key distribution protocol can be used together

with other methods because of the remarkably strong guarantees

it provides against the passive eavesdropper. Even though a

"better" method is being used to provide authenticity, its

security might have been compromised by theft of keys, in which

case it is impossible to guarantee authenticity, but the simple

key distribution protocol at least still guarantees secrecy.

6/4/79 Chapter IX Page 120

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

4. Authenticated Public Key Distribution

There is a now classic protocol [6] which provides secure

and authenticated communications between A and B: A and B gen

erate FA and EB and make them public, while keeping DA and DB

secret. The publ ic enciphering keys of all users are entered

in a public file, allowing easy and authenticated access to EX

for any user, X. EX can be authenticated upon entry in the

file by X making a personal appearance.

If A and B wish to agree on a common key k, then

1) A looks up EB in the public file.

2) A generates k1 randomly and transmits Ep(k1) to P.

3) B looks up EA in the public file.

4) B generates k2 randomly and transmits EA(k2) to A.

5) A computes k = (k1,k2>, where k2 = DA (EA (k2».
6) B computes k = (k1,k2>, where k1 = DB(E B(k1» .

At the end of this protocol, A and R have agreed on a com

mon key, k, which is both secret and authenticated. A is as

sured he is talking to B, for only B can decipher EB(k1), while

B is assured he is talking to A because only A can decipher

EA(k2).

This protocol suffers from two weaknesses. First, entries

in the public file might be altered. F. might create a false

6/4/79 Chapter IX Page 121

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

entry in A's public file which read:

B ••••••••••• • EE

This false entry would let E pretend to A that he was P., to the

disadvantage of both A and P.

False entries in the public file can be dealt with both by

good physical security, or by using new protocols (see sections

5 and 6) for authenticating the entries in the public file.

Second, secret deciphering keys can be lost. If E should

learn DB' then E could masquerade as P to A without altering

the public file. Unless additional precautions are taken, A

and B might never find out about the loss. Note that if DB is

compromised but DA is still secure, then A can no longer be

sure he is talking to B, but he can be sure he is talking

secretly to some (unauthenticated) person claiming to be B.

6/4/79 Chapter IX Page 122

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

5. Public Key Distribution with Certificates

Kohnfelder [14] suggested that entries in the public file

can be authenticated by having a Central Authority (CA) sign

them with DCA. He called such signed entries certificates.

The certificate for A, called CA, is computed by the central

authority as:

while similarly CB is computed as:

The protocol with certificates is the same as the authen-

ticated protocol, except steps 1 and 3, which involve looking

up EA and Ep ' are replaced by the steps of obtaining and check

ing the certificates for A and B. The modified protocol is:

1) A obtains P's certificate (either from a public file,

or by requesting it from B) and confirms it by com-

puting

ECA(CB) = "user P",Ep

2) A generates k1 randomly and transmits EB(k1) to B.

3) B obtains A's certificate and confirms it by comput-

ing

E (C) = "user A" E CA A ' A

4) P generates k2 randomly and transmits EA(k2) to A.

6/4/79 Chapter IX Page 123

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

5) A computes k = <k 1,k2>, where k2 = DA(EA(k2)).

6) P computes k = <k 1,k2>, where k1 = DB(Ep.(k1)).

This protocol assures A and P that each has the other's

public enciphering key, and not the public enciphering key of

some imposter.

The security of this protocol rests on the assumptions

that DA, DB' and DCA have not been compromised, that A and B

have correct copies of ECA ' and that the central authority has

not issued a bad certificate, either deliberately because it

was untrustworthy, or accidentally because it was t.ricked.

ECA can be published in newspapers and magazines, and sent

over all available communication channels.

correct reception would be very difficult.

Blocking its

Securi ty can be improved by having several "Central Au-

thorities," each with its own secret deciphering key. Each

user would be given a certificate from each authority, all au

thenticating the same public enciphering key. Compromise of a

single authority will no longer result in compromise of the

system.

If only a single "Central Authority" exists, and DCA is

compromised, then it is no longer possible to authenticate the

users of the system and their publ ic enciphering keys. The

certificates are now worthless because the (unauthorized) per

son who has learned DCA can produce false certificates at will.

6/4/79 Chapter IX Page 124

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

This problem can be greatly reduced by destroying DCA

after certificates for all users have been created. If DCA no

longer exists, it cannot be compromised. The central authority

would create ECA and DCA' sign all the certi ficates, then im

mediately destroy DCA. DCA would be vulnerable only during the

short time that it was being used to sign certificates.

While it is now impossible for anyone to falsely add new

users to the system by creating false certificates, it is also

impossible to add legitimate users to the system as well. This

is unacceptable. The simplest way of dealing with this problem

is for the central authority to issue new certificates with a

new (different) secret deciphering key. For example, each

month the central authority could create new certificates for

that month's new users using a newly created DCA. The new ECA

would be published, and the new users would be accepted. The

new DCA would be destroyed after use.

Al though this method sharply reduces the risk that DCA

might be compromised, it still leaves open the possibility that

the central authority might issue bad certificates either by

intent, or because of some tr ickery during the short period

when new certificates are actually being signed. These possi

bilities can be effectively eliminated by the next protocol.

6/4/79 Chapter IX Page 125

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

6. Public Key Distribution with Tree Authentication

Key distribution with certificates was vulnerable to the

criticism that DCA can be compromised, resulting in system wide

loss of authentication (although not necessarily loss of secre

cy). This problem can be solved by using tree authentication,

as described in Chapter V.

Again, this protocol attempts to authenticate entries in

the public file. However, instead of signing each entry in the

public file, this protocol applies a one way hash function, H,

to the entire public file. Even though H is applied to the en

tire public file, the output of H is only 100 or 200 bits long.

The (small) output of H will be called the root, R, of the pub

lic file. If all users of the system know R, then all users

can authenticate the correctness of the (whole) public file by

computing R = H(public file). Any attempt to introduce changes

into the public file will imply with probability near one that

R ~ H(altered public file), an easily detected fact.

This method effectively eliminates the possibility of

compromising DCA because no secret deciphering key exists.

Anyone can compute R = H(public file), and so confirm that the

copy of the public file that they have is correct. R, (like

ECA in the protocol of section 5) can be widely distributed.

Because correct copies of the public file are widely dis

tributed, it is very easy for a user of the system to discover

6/4/79 Chapter IX Page 126

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

that someone else is attempting to masquerade as him. If E has

put the false entry

A •••••••••••• • EE

into the public file, then A will discover this fact when he

looks at hi s own entry. A cannot be given a spec ially "pr int

ed" public file with his entry correct because then H(public

file) would not equal R. If new public files are issued before

they go into use, then all users of the system will have time

to assure that they have been correctly entered into the public

file. Because the public file will be subjected to the harsh

glare of public scrutiny, and because making alterations in the

public file is effectively impossible, a high degree of as

surance that the public file is correct can be attained.

While this concept is very comforting, forcing each user

to keep a complete copy of the public file might not be practi

cal. Fortunately , it is possible to selectively authenticate

individual entries in the public file, without having to know

the whole public file. This is done by using "tree authentica

tion," described in chapter V.

The essence of tree authentication is to authenticate the

entire public file by "divide and conquer." If we define Y =

public file = Y 1 ' Y2 ' ... y
n' (so the ith entry in the public

file is denoted Yi , and B's entry is YB); we can define

H(public file) = H(Y) as:

H(Y) = F(H(first half of r), H(second half of y)

6/4/79 Chapter IX Page 127

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

Where F is a one way function defined in section 1.

If A wishes to confirm B's public enciphering key, then A

need only know the first half of the public file, (which is

where YB appears) and H(second half of public file) which is

only 100 bits long. A can compute H(public file) knowing only

this information, and yet A only knows half the entries in the

public file.

In a similar fashion, A does not really need to know all

of the first half of the public file, for

H(first half of public file) =

F(H(first quarter of public file),

H(second quarter of public file))

All A needs to know is the first quarter of the public file

(which has YB), and H(second quarter of public file).

By applying this concept recursively, A can confirm Yp in

the public file knowing only R, log2 n intermediate H values,

and YB itself. The information needed to authenticate YB,

given that R has already been authenticated, lies along the

path from R to YE• This information will be called the authen

tication path.

These definitions are illustrated in figure 1, which shows

the authentication path for Y5•

This brief sketch of tree authentication should serve to

convey the idea. For a more detailed discussion the reader is

6/4/19 Chapter IX Page 128

FIG 1 i

CIRCLED ENTRIES SHOW THE AUTHE1~TICATION PATH FOR YSI

PAGE 128B

'0

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

referred to chapter V.

Using tree authentication, user A has an authentication

path which can be used to authenticate user A I s publ ic enci

phering key, provided that R has already been authenticated.

An "authentication path" is a new form of certificate, with ECA

replaced by R.

The advantage of tree authentication over certificates is

that no secret deciphering key DCA exists, so DCA cannot be

compromised. It is impossible to create false certificates

after R is computed.

With tree authentication, it is impossible to have a cen

tralized loss of authentication, but it is also impossible to

add new users without issuing a new tree. The tree, once com

puted, is fixed and unchanging. Therefore, the public file

(which is just the leaves of the tree) is also fixed and un

changing. For this reason, it can be carefully and publ icly

checked for errors. For the same reason, it is impossible to

update. A new tree must be issued periodically.

In summary: If tree authentication is used to authenticate

each entry in the public file, the protocol for public key dis

tribution proceeds as follows:

1) A obtains B's entry in the public file and B's authen

tication path (either from B or from some convenient

storage device) and confirms their correctness.

2) A generates k1 randomly and transmits EB(k1) to B.

6/4/79 Chapter IX Page 129

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEM~

3) B obtains A's entry in the public file and A's authen-

tication path and confirms their correctness.

4) B generates k2 randomly and transmits EA(k2) to A.

5) A computes k = <k,.k2>· where k2 = DA(EA(k2»·
6) B computes k = <k,.k2>· where k, = DB(EB(k,».

This protocol can only be compromised if: DA or DB is

compromised. or if R is not correctly known by A or B. or if

there is a false and misleading entry in the public file. The

latter two are easily detectable. If either A or B has the

wrong R. they will be unable to complete the protocol with any

other legitimate user who has the correct R. Complete failure

of the protocol is easily detected. and will lead to some sort

of corrective action. Implicitly. the correct value of R is

agreed on by A and B every time each confirms the correctness

of the other's authentication path. The correct value of R is

therefore being constantly transmitted between pairs of users

as they establish keys. This is in addition to other means of

confirming R. such as publication.

Because the public file is both open t.o public scrutiny

and unalterable. false or misleading entries can be rapidly

detected. In practice. a few users concerned with correctness

can verify that the public file satisfies some simple global

properties. i.e •• each user name appears once and only once in

the entire public file; individual users can then verify that

6/4/79 Chapter IX Page '30

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

their own entry is correct, and need not bother examining the

rest of the public file.

The only practical method of compromising either A's or

B's security is to compromise DA or DB. A user's security is

thus dependent on himself and no one else.

It is still possible for A to claim to be the non-existent

C. Because C does not exist, he will never object that A is

masquerading as him. A can effectively establish pseudonyms.

If it is essential to establish a one to one correspondence

between named users of the system and real people, some form of

physical authentication is necessary. In many applications

there 1s no need to know that user C is really a pseudonym for

. user A. As long as C pays his bills, his real identity is ir

relevant. The identifier "C" is relative, not absolute, and

serves simply to tie together a sequence of transactions.

6/4/79 Chapter IX Page 131

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

7. Digital Signatures

Diffie and Hellman [6 J suggested the use of publ ic key

cryptosystems to provide digital signatures, and Rivest, Shamir

and Adleman [31 J have suggested an attractive implementation.

Signature techniques based on methods other than public key

cryptosystems have been suggested by Lamport and Diffie [6 J,

Rabin [29J, and Merkle [19J.

Digital signatures, whether based on conventional encryp

tion functions, on public key cryptosystems, on probabilistic

computations, or on other techniques, share several important

properties in common. These common properties are best illus

trated by explaining the general concept of a digital signa

ture.

The now classic example of a digital signature is that of

a person A who wishes to place a purchase order with his stock

broker P. A has just received word that the stock will go up

in value, and wishes to purchase it within a few hours. A, on

the Riviera, cannot send a written order to B in New York in

time. All that A can quickly send to P is information, i.e., a

sequence of bits, but 8 is concerned that A may later disclaim

the order. A must somehow generate a sequence of bits (a digi

tal signature) which will convince B (and if need be, a judge)

that A authorized the order. It must be easy for P to validate

the digital signature, but impossible for him (or anyone other

6/4/79 Chapter IX Page 132

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

than A) to generate it (to prevent charges that B was dabbling

in the market illegally with A's money).

The signature must be a function of both the message and

the signer, for it must convince R (and a judge) that the par

ticular person, A, has signed the particular message, m. There

is basically one situation which the digital signature must

resolve: B claims that A signed a message, and A claims he did

not. If in fact A signed the message, then he is guil ty of

disavowal; but if he did not, B is guilty of forgery. To sum

marize: a digital signature should be message dependent, signer

dependent, easy for the sender to generate, easy for the user

to validate, but impossible to forge or disavow.

There are digital signature schemes which do not involve

public key cryptosystems, and some which involve elaborate in

teractions between A and P, as well as the clever use of random

information [29J, but it will be convenient notationally to let

A sign message m by computing the signature, DA(m). Checking a

signature will then be done by checking that m = EA(DA(m)). If

EA(DA(m)) produces an illegible message (random bits) then the

signature is rej ected as inval id. This notation is somewhat

misleading because the actual method of generating and validat

ing signatures can be very different from this model. This no

tation is retained because it is widely known and because we

will not discuss the differences among different digital signa-

ture methods, only their common properties. The conclusions

reached in the following paragraphs apply to both public key

6/4/79 Chapter IX Page 133

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

andnon-pub11c key based signature systems.

6/4/19 Chapt'er IX Page 134

PROTOCOLS FOR PUBLIC KEY CRYPTO~YSTEMS

8. ! Simple Digital Signature Protocol

The first digital signature protocol, proposed in [6],

proceeded as follows:

A and B agree on message m that A is to sign. A computes

DA(m) (where DA is known only to A) and transmits it to P. B

looks up EA in the public file. B can now check DA(m) by com

puting EA (D A (m» and confirming that it equals m. B retains

DA(m) as proof that A signed message m.

If A later denies having signed message m, P can give

DA(m) to a judge, who can easily compute EA(DA(m» = m, proving

that A signed the message.

This protocol has been criticized [32J, [27J on two

grounds.

First, the public file might have been tampered with.

When B looks up EA in the public file, E might have altered the

public file so that EE appears next to A's name. B will then

"check" a signature with the wrong public enciphering key, mak

ing B's "check" useless. ~ethods of authenticating the public

file, discussed previously under key distribution protocols,

minimize this problem.

A second criticism, raised by Saltzer [32J and by Popek

and Kline [27J, is that A can disavow the signed message, ex

plaining "E has stolen DA, and has posted it in a public place.

Clearly, anyone could have computed DA (m), so it proves noth

ing." In fact, E did not steal anything; A posted DA in a pub-

6/4/79 Chapter IX Page 135

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

lic place himself.

signed.

A can now disavow any message he ever

Although this simple protocol is flawed, it should be com

pared with current practice. At the moment, it is possible to

order goods and services simply by giving a valid credit card

number and nothing else.

Further, A cannot disavow a signed message without gen-

erating suspicion. Repeated disavowals would be especially

questioned. In an actual system, the incidence of disavowal

will be low, which implies that careful investigation of those

cases that do occur is possible.

A simple solution to the disavowal problem is to adopt

very good physical security for DA, and then refuse to accept

A's claim that DA was compromised. Several factors combine to

allow extraordinarily good physical security for DA• First,

destruction of DA is merely inconvenient. A can always gen

erate a new D'A and E'A. If theft of DA is imminent, A can

destroy DA• Contracts signed with DA are still val id and EA

still exists to authenticate them, even though DA has been des

troyed.

Second, only a single copy of DA need exist. Because des

truction of DA is only inconvenient, backup copies of DA need

not be kept. DA could be kept in a small strong box or on a

single chip of silicon in a "signet ring" worn by A. Attempts

to open the ring would cause destruction of DA•

To summarize, the simple signature protocol is a great im-

6/4/79 Chapter IX Page 136

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

provement over the current situation (no signature protocol),

but it suffers from three problems: the public file that B

checks must be accurate; A might disavow the resulting signa

ture, explaining (falsely) that DA was stolen; and DA might ac

tually be stolen by E who can then impersonate A.

Authenticating the entries in the public file was con

sidered under public key distribution protocols.

Physical security of DA is A's responsibility.

Disavowal is considered further in section 9.

6/4/79 Chapter IX Page 137

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

9. Dealing with Disavowal

If it is necessary to assume that DA can be compromised,

then several protocols which reduce or mitigate the problem of

disavowal suggest themselves.

One solution is to have a witness testify to the time of

the order only. Essentially, this reduces the role of the wit

ness to that of a reliable time stamp. As mentioned before, if

a message was signed prior to the time the key was compromised,

then it must be val id • The wi tness signs a statement of the

format "The time is now 12:04:23 on the 17th of March, 1979,

and I have been presented with the following bit pattern

xxxxxxxxxxxxxxxxxxxxx." If the witness' signature is still

valid, and the witness signed the statement prior to the time

DA was compromised, then the witnessed signature must also be

valid. The witness need not physically authenticate A's agree

ment; the wi tness does not care where the bit pat tern comes

from nor what it means.

If A claims he lost DA yesterday, then a message signed

three months ago and "time stamped" by a witness two months ago

is still valid. Only A's recently signed messages are open to

question.

A can still disavow a message signed at 2:00 explaining

that his signature was compromised at 1: 00 but that he d idn' t

notice this fact until 3: 00. If A's argument that DA was

6/4/79 Chapter IX Page 138

!

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

compromised and he failed to notice this for two hours is ac

cepted, then he can disavow a signed message. Since the "bene

fit" of most disavowals (e.g. stock orders) is not realized un

til a significant time after the message is sent, time stamping

is more valuable than might first appear.

If there is a witness who is trusted not to disavow his

signature, why not rely on him entirely, and eliminate A's di-

gital signature completely? The witness' testimony that A

agreed to the contract would BE the "signature." If the witness

is fully trusted, he need not even use digital signatures. He

could simply remember the contracts. In the event of dispute,

the witness would simply look up the appropriate contract, and

all parties to the dispute would abide by that version. (Popek

and Kline [27] advocate the use of such methods.)

The primary disadvantage to this al ternative is that A

loses control over his signing ability. The witness can now

forge A's "signature" on a contract, either because the witness

is mal icious, or because the witness made a mistake. If the

witness' word is accepted as binding, A would have no recourse.

Even though A swore that he had not seen the contract, had not

agreed to the contract, and would never have agreed to the con

tract, if the "signature" provided by the witness is to be use

ful, A's pleas must be ignored. In contrast, if the witness

only countersigns A's digital signature, then A is guaranteed

that forgery is impossible so long as DA is secure.

In addition, if A is in San Francisco, B is in New York,

6/4/79 Chapter IX Page 139

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

and the witness is in Philadelphia, then some form of secure

communications between the various sites is required.

adds additional points of vulnerability to the system.

This

Finally, if the witness is responsible for many contracts

worth many millions of dollars, it is an attractive target for

system penetrators and vandals. By contrast, digital signa

tures are distributed; there is no central site whose destruc

tion or compromise would invalidate all signatures for all

users.

Disavowal is an inherent property of any signature tech

nique, including written signatures, stamps, seals, etc. For

any signature system, the signer can try to disavow his signa-

. ture by creating a fanciful but not impossible scenario which

would have allowed someone else to have forged the signature.

The essential question is the plausibility of these scenarios.

As their plausibility is reduced, the risk of disavowal is also

reduced. To be practical, a signature system must reduce the

risk of disavowal to a level which is tolerable for the partic

ular application. Complete elimination of all risk does not

appear to be attainable in practice.

6/4179 Chapter IX Page 140

PROTOCOLS FOR PUBLIC KEY CRYPTOSYSTEMS

10. Conclusions

The primary purpose of this chapter has been to increase

the readers insight into the strengths and weaknesses not only

of the particular protocols described, but also of cryptograph

ic protocols in general. Certainly, these are not the only

cryptographic protocols possible. However, these protocols are

valuable tools to the system designer: they illustrate what

can be achieved and provide feasible solutions to some problems

of recurring interest.

6/4/79 Chapter IX Page 141

X. ON THE SECURITY OF ~ULTIPLE ENCRYPTION

Diffie and Hellman [5 J have argued that the 56-bit key

used in the Federal Data Encryption Standard (DES) [24J is too

small and that current technology allows an exhaustive search

56 of the 2 keys. Although there is controversy surround ing

this issue [9,15,34,23,40,2J, there is almost universal agree-

ment [37,5) that multiple encryption using independent keys can

increase the strength of DES. But, as noted in [5 J, the in-

crease in security can be far less than might first appear.

This chapter shows that a recently proposed scheme [37J for

multiple encryption suffers from such a weakness.

The simplest approach to increasing the key size is to en-

crypt twice, with two independent keys K1 and K2. Letting P be

a 64 bit plaintext, C a 64 bit ciphertext, and K a 56 bit key,

the basic DES encryption operation can be represented as

(10.1)

and simple double encryption is obtained as

(10.2)

While exhaustive search over all 2112 keys ((K1,K2)

.) . 2112 t· d ill . f . bl th· palrs requlres opera lons an s c ear y ln eaSl e, lS

cipher can be broken under a known plaintext attack (where

corresponding plaintext and ciphertext are both known) with 256

operations [5J, and 256 words of memory. The complexity, meas-

6/4179 Chapter X Page 142

ON THE SECURITY OF MULTIPLE ENCRYPTION

ured as time plus memory is therefore no greater than is needed

to cryptanalyze a single 56 bit key exhaustively. (Though the

cost is somewhat higher since memory is "more expensive" than

time.) If P and C represent a known plaintext-ciphertext pa ir,

then the algorithm for accomplishing this (5] encrypts P under

all 256 possible values of K1, decrypts C under all 256 values

of K2 and looks for a match. For obvious reasons this is

called a "meet in the middle" attack and is given in detail by

the following algorithm (Where n is the number of keys in the

key space. For DES, n = 256):

1.) For i = 1 to n Do

a.) Table(i] = <Si(p),i,"encrypt">

-1 b.) Table(n+iJ = <Si (C),i,"decrypt">

2.) Sort the table on the first field.

3.) Search the table for adjacent entries of the form

6/4/79

<value,K1,"encrypt">

<value,K2,"decrypt">

and test to see if K1 and K2 are the correct keys by

encrypting further plaintext-ciphertext pairs. Based

on unicity distance arguments (30,35], there will be

about 248 "false alarms" for I<'1 and K2 if a single

plaintext-ciphertext pair is used. Testing these

takes less than 256 operations and therefore contri-

butes an unimportant overhead to the computation.

Chapter X Page 143

ON THE SECURITY OF MULTIPLE ENCRYPTION

While the algorithm given runs in time n log n, it could

be rewritten using hash tabl es to run in essentially linear

time. In any event, the present analysis wi1l neglect loga-

rithmic factors.

The use of double encryption provides some increase in

. t b th 1 . th f t'· . 256 securl y ecause e a gorl m or cryp ana_ysIs requIres

d f as well as 256 wor s 0 mf'mory, operations. The cost of a

machine to perform 256 operations in approximately a day has

been estimated by Diffie and Hellman [5] to be about 20 million

dollars. The cost of 256 64-bit words of memory on 6250 cpi

reels of magnetic tape, assuming 2400 foot reels that cost $15

dollars each, is about 60 billion dollars.

While the cost of implementing this search is high enough

to discourage its use today, the danger of cheaper technology

or shortcuts [9] in the future prompted Diffie and He1lman to

suggest triple encryption with three independent keys K1, K2

and K3. A generalized meet in the middle attack would then re

quire 2112 operations and be well beyond the foreseeable tech-

nology for at least 50 years, and possibly forever.

At the 1978 National Computer Conference, Tuchman [37]

proposed a triple encryption method which uses only two keys K1

and K2. The plaintext is encrypted with K1. decrypted with K2,

then again encrypted with K1 so that:

6/4/79 Chapter X Page 144

ON THE SECURITY OF MULTIPLE ENCRYPTION

This method seems to avoid the "meet in the middle" attack

outlined above and is upwardly compatible with a single encryp-

tion by setting K1 = K2 to produce:

(10.4)

This allows users of the new (two key) system to decrypt

data encrypted by users of the old (single key) system.

Although the encryption technique (10.3) provides more

security than simple double encryption as in (10.2), it is

shown below that the new method can be cryptanal yzed using a

chosen plaintext attack [6J in about 256 operations. We there-

fore recommend that if triple encryption is used, there be

three independent keys. If compatibil ity with single encryp-

tion is desired, the operation can be taken to be:

-1
C = SK1£SK2[SK3(P)J} (10.5)

Then when K1 = K2 = K3 = K, C = SK(P). Users could al so be

compatible with Tuchman's suggested two key method by taking K1

= K3.

Although chosen plaintext attacks can sometimes be mounted

on real systems, the following should be viewed as a "certifi-

cational attack" which is only indicative of a weakness. His-

tory, littered with the broken remains of "unbreakable" ci-

phers, teaches extreme caution in certifying a new one [12J, so

that today even an indication of weakness is regarded as

dangerous. In many cases, ciphers which have yielded to chosen

6/4/79 Chapter X Page 145

ON THE SECURITY OF MULTIPLE ENCRYPTION

plaintext attacks have later proven vulnerable to known plain-

text or ciphertext only attacks as well.

We define some useful notation before describing the

method of cryptanalysis:

C = Enc(P) = -1
SK1 {SK2[SK1 (P)]} (10.6)

M1 = SK1 (P) (10.7)

-1 (10.8) M2 = SK2(M1)

-1 (10.9) = SK2 (SK1 (P»

-1 (10.10) = SK1(C)

M1 and M2 are intermediate values in the computation of C from

. P.

We can motivate the method of cryptanalysis with the fol-

lowing observations:

If we knew K1 and a (P, C) pair, then it would be possible

to compute the intermediate values M1 and M2 from (10.7) and

(10.10). This would let us mount a known plaintext attack on

K2 using (10.8). There are 256 values of K1, so if we could

quickly determine the right K2 once we found the rigbt K1, then

cryptanalysis would only take 256 operations. Determining K2

using a known plaintext attack requires 256 operations, which

is too long.

The trick is to somehow change the known plaintext attack

on K2 to a chosen plaintext at tack (that is, M1 is chosen in

(10.8); for example, M1 = Q), so we can quickly solve for K2

6/4/79 Chapter X Page 146

ON THF SECURITY OF ~ULTIPLE ENCRYPTION

with a table lookup. This increases the memory needed to 256

words, the same as is needed by the meet in the middle attack

for simple double encryption.

For this attack to work, we must find the value of P such

that M1 = SK1(P) = Q. If we knew the right K1, then we could

-1 easily compute P = SK1(Q) from(10.7), and cryptanalyze the sys-

tem in one step, because we could then request EncCP) = C, (by

-1 the chosen plaintext assumption); compute SK1(C) = M2; and com-

pute K2 in one step from ~2 using the precomputed table.

Since we do not know K1, we repeat this process for each

of its 256 possible values and test any resulting (K1,K2) pairs

to see which one is correct. Again using unicity distance ar-

48 . guments, we expect 2 false alarms, which is small compared

with 256.

-1 Because P = SK1(Q) from (10.7) and M2 = -1 SK1 (Q) from (10.8)

the algorithm can proceed as follows:

1.) For i = 1 to n Do

.... -1
a.) M2 = Si (Q)

b.) Table[iJ = <M2, i, "2">

" -1 -1 c.) M2 = S. (EncCS i (0»)
1 -

d.) Table[n+iJ = <M2 ,i,"1">

2.) Sort the table on the first field.

3.) Search the table for adjacent entries of the form

<value ,K2, "2">

<value,K1,"1">

6/4/79 Chapter X Page 147

ON THE SECURITY OF MULTIPLE ENCRYPTION

and test to see if K1 and K2 are the correct keys by

checking further plaintext-ciphertext pairs.

Step 3 is guaranteed to find the correct (K1,K2) pair.

6/4/79 Chapter X Page 148

ON THE SECURITY OF MULTIPLE ENCRYPTION

Conclusion

Two methods of multiple encryption have been shown to be

less secure than they first appeared. The weakness in both

cases came from an ability to separate the key into two halves

which did not interact. We conclude that all bits of the key

should come into play repeatedly in a complex fashion as they

do in the 56-bit DES, and that multiple encryption with any

cryptographic system is 1 iable to be much less secure than a

system designed originally for the longer key.

6/4/79 Chapter X Page 149

XI. CONCLUSION

The use of cryptography is growing because of the increas

ing demand for privacy as reflected in new legislation, the

need to protect vulnerable electronic funds transfer systems,

the increasing quantity and value of information sent over

vulnerable communication channels, the dropping price of eaves

dropping and analyzing information, and the dropping price of

protecting information via encryption.

Although it is difficult to predict the curves and swerves

of a new and rapidly developing technology, it appears that

many of the techniques described in this thesis will be used in

telecommunication systems that span the globe to protect the

privacy and integrity of communications of all kinds.

6/4/79 Chapter XI Page 150

XII. BIBLIOGRAPHY

1. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Desjgn and

Analysis of Computer Algorithms, Reading, Ma.: Addison-Wesley,

1974.

2. O.K. Branstad, J. Gait, and S. Katzke, Report of the

workshop on cryptography in support of computer security, Na

tional Eureau of Standards Rep. NESIR 77-1291, 21-22 Sept.

1976.

3. R. Davis, Remed ies sought to defeat Soviet eavesdropping

on microwave links, ~icrowave Syst., vol. 8, no. 6, pp. 17-20,

June 1978.

4. Diffie, W., and Hellman, M.E., Privacy and authentication:

an introduction to cryptography, Proceed ings of the IEEE Vol.

67, No.3, Mar. 1979 pp. 397-427.

5. Diffie, W. and Hellman, M. Exhaustive cryptanalysis of

the NBS data encryption standard, Computer June 1977, pp. 74-

84.

6. Di ffie, W., and Hellman, M. New directions in cryptogra

phy. IEEE Trans. on Inform. IT-22, 6(Nov. 1976), 644-654.

7. Evans, A., Kantrowitz, W., and Weiss, E. A user authenti

cation system not requiring secrecy in the computer. Comm. ACM

6/4/79 Chapter XII Page 151

BIBLIOGRAPHY

17, 8(Aug. 1974), 437-442.

8. Feistel, H. Cryptography and computer privacy. Sci. Am.

228,5 (May 1973), 15-23.

9. Hellman, M. Merkle, R. Schroeppel, R. Washington, L., Dif

fie, W., Pohlig, S., Schweitzer, P. Results of an initial at

tempt to cryptanalyze the NBS data encryption standard, Infor

mation Systems Laboratory SEL 76-042, Sept. 9, 1976.

10. E. Horowitz and S. Sahni, Computing partitions with appli

cations to the knapsack problem, JACM, Vol 21, No.2, April

. 1974, pp. 277-292.

11. O.H. Ibarra and C. E. Kim, Fast approximation algorithms

for the knapsack and sum of subset problems, JACM Vol. 22, No.

4, October 1975, pp. 463-468.

12. Kahn, D. The Codebreakers. Macmillan, New York, 1976.

13. Karp, R. M. Reducibility among combinatorial problems, in

Complexity of Computer Computations, R. E. Miller and J. W.

Thatcher, eds., Plenum Press, New York (1972), pp. 85-104.

14. Kohnfelder, L.M. Using certificates for key distribution

in a public-key cryptosystem. Private communication.

6/4/79 Chapter XII Page 152

BIBLIOGRAPHY

15. Kolata, G.B. Computer encryption and the National Securi

ty Agency. Science, Vol. 197, July 29, 1977.

16. E. L. Lawler, Fast approximation algorithms for knapsack

problems, Electronics Research Laboratory, College of Eng. U.C.

Berkeley Memorandum No. UCB/ERL M77/45, 21 June 1977.

17. Lipton, S.M., and f"latyas, S.f"l. Making the digital signa

ture legal--and safeguarded. Data Communications (Feb. 1978),

41-52.

18. McEliece, R.J. A public-key cryptosystem based on alge

braic coding theory. DSN Progress Report, JPL, (Jan. and Feb.

1978), 42-44.

19. Merkle, R. A certified digital signature, submitted to

CACM.

20. Merkle, R. Secure communications over insecure channels.

Comma ACM 21, 4(Apr. 1978), 294-299.

21. Merkle, R., and Hellman, M. Hiding information and signa

tures in trapdoor knapsacks. IEEE Trans. on Inform. IT-24 ,

5(Sept. 1978), 525-530.

22. R. Merkle, Secure communications over insecure channels,

6/4/79 Chapter XII Page 153

BIBLIOGRAPHY

CACM Vol. 4, No. 21, April 1978 pp 294-299.

23. Morris, R., Sloane, N.J.A., and Wyner, A.D. Assessment of

the National Bureau of Standards proposed federal data encryp

tion standard. Cryptologia, vol. 1, pp. 281-291, July 1977.

24. National Bureau of Standards, Federal Information Process

ing Standards Publication No. 46.

25. R.M. Needham and M.D. Schroeder, Using encryption for au

thentication in large networks of computers. CACM 21,12 Dec.

1978 pp. 993-999.

26. S.C. Pohlig and M.E. Hellman, An improved algorithm for

computing logarithms over GF(P) and its cryptographic signifi

cance, IEEE Trans. on Info Theory, vol. IT-24 , pp. 106-111,

Jan. 1978.

27. G.J. Popek and C.S. Kline, Encryption protocols, public

key algorithms, and digital signatures in computer networks; in

Foundations of Secure Computation, pp. 133-153.

28. George B. Purdy, A high security log-in procedure, Comm.

of the ACM, Vol. 17 No.8, pp. 442-445, Aug. 1974.

6/4/79 Chapter XII Page 154

BIBLIOGRAPHY

29. Rabin, M.O., Digitalized signatures, in Foundations of

Secure Computation, ed. DemilIo, R.A., et. al. pp. 155-166.

30. Hellman, M.E. An extension of the Shannon theory approach

to cryptography, IEEE Trans. Inform. Theory Vol. IT-23 , May

1977 pp. 2A9-294.

31. Rivest, R.L., ~hamir, A., and Adleman, L. A method for ob

taining digital signatures and public-key cryptosystems. Comm.

ACM 21, 2(Feb. 1978), 120-126 .

. 32. J. Saltzer, On Digital Signatures, private communication.

33. R. Schroeppel, unpublished work.

34. Senate Select Committee on Intelligence, Involvement of

the NSA in the development of the data encryption standard.

News release, April 12, 1978.

35. Shannon, C. E. Communication theory of secrecy systems.

Bell Sys. Tech. Jour. 28 (1949) 654-715.

36. J. Squires, Russ monitor of U.S. phones, Chicago Tribune

pp. 123, June 25, 1975.

6/4/79 Chapter XII Page 155

PIBLIOGRAPHY

37. W.L. Tuchman, Talk presented at the Nat. Computer Conf.,

Anaheim, Ca. June 1978.

38. Wilkes, M.V., Time-Sharing Computer Systems, Elsevier, New

York, 1972.

39. Wyner, A. D. The wire tap channel. Bell Sys. Tech. Jour.

54,8 (Oct. 1975), 1355-1387.

40. E.K. Yasaki, Encryption algorithm: key size is the thing,

Datamation, Vol. 22, No.3, pp. 164,166, Mar. 1976 •

. 41. Feller, W. An Introduction to Probability Theory and its

Applications, Vol. I, third edition, New York, Wiley 1968, p.

33.

42. Shamir, A. On the cryptocomplexity of knapsack systems,

Symposium on the Theory of Complexity, Atlanta, Georgia, Apr.

1979.

43. Shamir, A. A fast signature scheme, MIT Laboratory for

Computer Science Report TM-107 July 1978.

6/4/79 Chapter XII Page 156

XIII. ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

1*

General Comments:

The following routines have been written in PC, a

simplified version of C that does indefinite precision

integer arithmetic. BC runs on a PDP-11 under the Unix

operating system.

BC has a few peculiar conventions as follows:

% The infix mod operator. w'Xm computes w modulo m.

auto A local variable declaration.

++ The unary increment-by-one operator. As a

postfix operator, it first returns the value

of a variable, then increments it. As a prefix

operator, it increments a variable and returns

the incremented value.

Same as ++, only it decrements.

!= The relational not-equal operator. 0!=1 is true,

but O!=O is false.

" "
The relational equal operator: 0==0 is true.

The indicated string is printed, no print or output

statement is needed.

exp A naked expression is printed. The statement

6/4/79

" i = ";i

when i has value 845 will print

i = 845

To prevent unwanted printout of integer values

from function calls, the construct

f=f(a,b,c)

Chapter XIII Page 157

*1

1*

*1

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

will often appear, where f is a dummy variable

which is discarded

[] Left and right braces cannot appear in comments or

in quotes (a bug) so all comments and quotes use

(and) for array subscripts.

The semicolon is optional at the end of a line.

if(O==O) statement; The statement is executed. This

redundant construct is required because of

bugs in BC.

This file contains all routines necessary to

generate trapdoor knapsacks, EXCEPT the

routine r(l,h), used to generate a random number

in the range from 1 (low) to h (high). That

is, rO,h) is a random number satisfying

1 < rO ,h) <h

The main routine is m:make. Once called, it calls upon

other routines, as needed, to generate the trapdoor knapsack.

define m(m,n,r,g,b){

auto i,e,t

1* m:make makes the enciphering and deciphering

6/4/79

keys for the iterated generalized knapsack method.

The input parameters have the following meanings:

m: The size in bits of m(1), the first modulus.

n: The number of integers in the generalized

Chapter XIII Page 158

:-

,

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

trapdoor knapsack.

r: the repetition count, i • e. , how many iterations.

g: The growth rate, in bits/iteration.

b: The bound on the x(1): o < xCi) < b.

Print out the arguments: *1

if(1 ==1) "

The arguments m,n,r,g,b to m:make were:

"
m

n

r

g

·b

1*

*1

We compare the "natural" growth rate

with the growth rate g. If the natural growth rate

exceeds the growth rate g, then we assume that the

natural growth rate is desired.

g=2"g

t= (b-1)*n

jf(g<t) g=t

1* e determines how many multiples of m(i) can be

added to the a(i) *1

e=g/t-1

if(O==O) "

6/4/79 Chapter XIII Page 159

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

The value of e is: ";e

1* now we generate m(1) and w(1) *1

m[1] = r(2"(m-1),2"m)

w[1] = r(1,m[1])

1* Now to make sure gcd(w(1),m(1» = *1

t = g (w[1], m [1])

while(t!=1) { w[1] = w[1]/t; t=g(w[1],m[1])}

1[1] = i(w[1],m[1])

1* now we generate the a' vector

(the value of c is discarded) *1

c=c(w[1],m[1],b,n)

1* copy it for safekeeping *1

for(i=1;i<=n;i++) p[i]=a[i]

" basis generated

"
1* now to generate the rest of the wand m vectors *1

for(i=2;i<=r;i++) {

i

m[i] = rCg*m[i-1],2*g*m[i-1])

w[i] = r(1,m[i])

1* Make sure gcd(w(i),m(i»=1 *1

t = gCw[iJ,m[i])

while(t!=1) { w[i]=w[i]/t; t=g(w[i],m[i.])}

1* and compute the inverse of w modulo m *1

i[i] = i(w[i],m[i])

}

1* Now we can generate the public enciphering vector *1

for(i=1;i<=n;i++) forCj=1;j<=r;j++) {

6/4/79 Chapter XIII Page 160

~

i

j

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

a[i]=a[i]*i[j]%m[j]+r(O,e)*m[j]

" Mark! "

}

1* And print the public enciphering vector *1

if{O==O) " The public enciphering vector is:

"
p(a[],n)

1* print the simple knapsack vector *1

if{O==O) "

The simple (secret) knapsack vector is:

"
p(p[],n)

if{O==O) " The w vector is:

"
p(w[],r)

if (0==0) " The m vector is:

"
p{m[],r)

if{O==O) " The i (inverse of w) vector is:

"
p(H J,r)

return(O)

}

" just passed m:make

"
define i(a, b){

6/4/79 Chapter XIII Page 161

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

auto j,i,m,t

/* This routine computes a inverse mod b

i= 1

j=O

m=b

while(O==O){

t=b/a

j=j-t*i

b=b-t*a

if(b==O) if (a!=1) " in i: invert.

"
if(b==O) return(i)

t=a/b

i= i-t* j

a=a-t*b

if(a==O) if (b! = 1) "in

"
if(a==O) return(j+m)

}

}

" just passed i:invert

"
define g(a,b){

auto i,j,k

i: invert.

/* computes the gcd of a and b */

while(O==O){

a=a%b

if(a==O) return(b)

b=b%a

*/

gcd

gcd

6/4/79 Chapter XIII Page 162

is not

is not

1

1

}

"
"

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

if(b==O) return(a)

}

just passed g:gcd

define c(w,m,b,n){

auto k,j,x,y

1* c:create creates the n numbers involved in the simple

generalized knapsack vector. 0< xCi) < b.

. *1

}

"
"

Note that the array a really represents

the a' vector.

Note that summation over n of (b-1)*a(i) is bounded by m,

and that the a(i) satisfy a(i) > (b-1) * summation a(j)

for j<i.

k = m 1 b n

for(j=1;j<=n;j++){

a[j] = r«b (j-1)-1)*k+1,b (j-1)*k)

}

return(O)

just passed c:create

define p(a[],n){

auto i

1* p:print prints Qut an array *1

for(i=1;i<=n;1++) a[i]

return()

6/4/79 Chapter XIII Page 163

ROUTINES TO GENERATE TRAPDOOR KNAPSACKS

}

" just passed p:print

"
1* The calling sequence: global parameters are initialized,

and the main routine, m, is called.

The "?" is an input statement * 1

m=?

n=?

r=?

g=?

b=?

m(m,n,r,g,b)

6/4/79 Chapter XIII Page 164

9

!

XIV. EXAMPLES OF TRAPDOOR KNAPSACKS

1. Introduction

This appendix gives some example trapdoor knapsacks. The

author has retained the secret deciphering keys, and the reader

is challenged to break any of them. They are of marginal

strength to encourage attempts to break them. Full documenta

tion, including listings of all relevant programs and the enci

phering key, are given.

2. Description

The reader is assumed to be familiar with [6]. Most of

the notation and all of the concepts that follow are described

there.

The program which generates trapdoor knapsack vectors has

five input parameters, as well as a source of random integers.

The random numbers are provided by a subroutine. This subrou

tine, r(l,h), accepts two arguments: a lower limit and an upper

limit. It returns a random integer in the range from the lower

limit to the upper limit (inclusive).

The five parameters describe:

1) n: The number of integers in the knapsack.

2) b: The range of the x[i]. 0 < x[i] < b.

3) r: The number of iterations.

~) g: The "growth" of the m vector per iteration in bits.

6/4/79 Chapter XIV Page 165

EXA~PLES OF TRAPDOOR KNAPSACKS

(That is, m[i] is about 2g ·m[i-1]).

5) m: The size of m[1], the first modulus. (Note that m,

as used in this context, is NOT the same as m

described in [1]. The m vector is the natural

generalization of m in [1].)

The reader can check his understanding of the parameters

n, b, and r by examining the following program segment. If we

let the a' vector be the easy to solve (secret) knapsack vec

tor, and a be the publicly known knapsack vector, then the rou

tine for decoding s, the weighted sum of the integers in the a

vector (s = x dot a) is:

For j = r downto 1 do s = s*w[j] mod m[j];

For j = n downto 1 do

Begin

x[j]=s/a'[j];

End

if(x[j]>=b) print(" Error: x[j] larger than b");

s=s-x[j]*a'[j];

Note that the first For statement converts s from the dif

ficult to solve knapsack problem to the easy to solve knapsack

problem. The vectors wand m are just the generalizations of

6/4/79 Chapter XIV Page 166

.,

!

EXAMPLES OF TRAPDOOR KNAPSACKS

the integers wand m used in the single iteration knapsack.

The second For statement decodes s into a weighted sum of

the a'[i].

The parameters g and m are used to define the size of the

integers in the knapsack problem. In particular, m gives the

size in bits of m[1J, while g gives the "growth rate", Le.,

the increase in the size between m[i] and m[i+1]. These two

parameters, taken together, define the size of m[i] for all i.

Knapsacks with the following parameters have been gen

erated:

6/4179

m

300

300

300

550

n

20

6

r

6

2

g

30

30

b

2"10

2"30

20 2"10

4 2"100

Chapter XIV Page 167

EXAMPLES OF TRAPDOOR KNAPSACKS

3. THE PUBLIC ENCIPHERING KEYS

The following section has the output of the trapdoor knap

sack generating function. The output has been edited both for

clarity and to delete the secret deciphering keys. The digits

in the secret deciphering keys have been replaced with X's,

thus clearly showing the size of these numbers but concealing

their exact values.

Numbers which require more than one line are extended us

ing "\" at the end of the line.

6/4/79 Chapter XIV Page 168

?

EXAMPLES OF TRAPDOOR KNAPSACKS

The arguments m,n,r,g,b to m:make were:

300

20

o

1024

The value of e is: 0

The public enciphering vector is:

15129608995554448265183294801259173700777693742504245849293517\

00743775970020807652616728474

. 17524932983557645722760284190473882583927059421015819376353932\

5799065041428006760782725691

17225937970747338687231551661572161286297722869710199263697080\

7820958655976133279487750620

91488866379290109557739402894698211130838391427430023781525692\

3811073379658376192168379165

94262820794253890320443933071875869795625142774573849428509608\

650456231106385706727836631

11388384681036095320536124150646919167647675890919002134429991\

63493020581846432447173678482

17164561490371563702262183773738261525487190864260252517798872\

77213395347497006724623499765

86517801731770532543741885456541883058148324212404989101077399\

8735545819677701380449301433

6/4/79 Chapter XIV Page 169

EXAMPLES OF TRAPDOOR KNAPSACKS

11918610102945650340311160161650311523832811383399928255062558\

02514510029525184748851751894

10186511811912590244551480266112526423081912035430233837583568\

28199528366796096978741582414

88132900511530210932431198840838038423113420192104681140079893\

1596001610428439534682519121

11271491248094114240428639166896531852810916694253901676788123\

04015415567501129115853489561

12085311314318150243424363543606231831199901981114062610222009\

15669311895163002094289286961

14485430922501364435992263112363565292151305951945041835388146\

69771715706518806175445236680

. 18881261711072427885226330073913600056141964754750810684880976\

69208294411355621724461161591

18840689204755897531138630187418592655100273389883361028261623\

8323731921940674944071511959

53196909860835203432715212539792034763303370601440944113970149\

6134355179709669756985245364

17508960079759190905452196910562315702874340626629585921387736\

53520312052499979153941352119

75110242518324020050071796663749928678824337103158621132808528\

834253104532129465889505610

18633041196220983043158614594316710432541253309650075539934535\

52119983887566281548150010461

The simple (secret) knapsack vector is:

6/4/79 Chapter XIV Page 110

EXAMPLES OF TRAPDOOR KNAPSACKS

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX

XXX

XX

XXX

XX

XXX

XX

XXX

XX\

. XX

XX\

XXXXX

XX\

XXXXXXXX

XX\

XXXXXXXXXXX

XX\

XXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXX

XX\

6/4/19 Chapter XIV Page 171

EXAMPLES OF TRAPDOOR KNAPSACKS

XXXXXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXX

The w vector is:

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The m vector is:

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The i (inverse of w) vector is:

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

6/4/79 Chapter XIV Page 172

EXA~PLES OF TRAPDOOR KNAPSACKS

The arguments m,n,r,g,b to m:make were:

550

4

1

30

1267650600228229401496703205376

The value of e is: 0

The public enciphering vector is:

66548921643195336226466738477434229959192804189375188792173517\

98204581021406969103971543806570426505592910710830964580119256\

. 57074465022305714593614695666457981294232

11684898605722586318894226889837168088364682651279852730837157\

59301391908196763856942352126002186651785657829322167674672214\

87936298749063963446686191605473239307527

28673911921164002303992927072837051623067378006874600205947505\

33516592506537471315024349010350090619979216651185755427174124\

601708976690831746874800531778679894464877

10698579696822998161535367373067222285227832403890470260459712\

75683530572527154813286992913241349008324990670208801873643214\

620092254448548529952897080766929088669071

The simple (secret) knapsack vector is:

XX

XX\

6/4/79 Chapter XIV Page 173

EXAMPLES OF TRAPDOOR KNAPSACKS

XXXXXXXXXXXXXX

XX\

XX

XX\

XX\

XXXXXXXXXXXX

The w vector is:

XX\

XX\

XX

The m vector is:

. XX\

XX\

XX

The i (inverse of w) vector is:

XX\

XX\

XX

6/4/79 Chapter XIV Page 174

FXAMPLES OF TRAPDOOR KNAPSACKS

The arguments m,n,r,g,b to m:make were:

300

6

2

30

1073741824

The value of e is: 0

The public enciphering vector is:

13132235906108717392663365023635308161076002659005223324995682\

25757599936500808339254694610635045146

. 12528488195733656928466152676882523900185516876324287298619131\

380586309946524954009856518314444714159

98959536571058166688252421388712784824420035528572633604543631\

48601662744714607478456499807853916200

12178246401570249356105744244631115771305946255369054130689551\

725925672696713096799262325240902054193

13359484996590370029702383299514807005137667883850037475621696\

084206987776300260651262919761676285651

10605380625130962048597032199209554360229746160482647791377347\

415113739429281225862963632868189331960

The simple (secret) knapsack vector is:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX

6/4/79 Chapter XIV Page 175

EXAMPLES OF TRAPDOOR KNAPSACKS

XXX

XX\

XX

XX\

XXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXX

The w vector is:

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The m vector is:

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The i (inverse of w) vector is:

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

6/4/79 Chapter XIV Page 176

EXAMPLES OF TRAPDOOR KNAPSACKS

The arguments m,n,r,g,b to m:make were:

300

20

6

30

1024

The value of e is: 52479

The public enciphering vector is:

38715730992554486121272405707302308900190254362381098248854037\

02039089147774642182302678634059272748460321670522654185789046\

. 69317062601758874

45963481413062270897336980471131787803479816837563704871634929\

64412545824400034470141207481925514558064955814501581390649868\

25526460022708092

47379305802924677405559984916424427031739779129707090405682403\

71910070469798171108869279088831676924440803743504418976009529\

4154941724990513

84147494179172295428375031758012898740442809371305937121065706\

84577751060823914277922629647522204684617711533895415516215144\

0356446225485422

35547604501964494370572010230613962827803372039718656497738549\

70511639432408234857437415904856467426298605828569125571658631\

23689858301771567

26327874002151723192221794869064497756424507919872393125373781\

6/4/79 Chapter XIV Page 177

EXAMPLES OF TRAPDOOR KNAPSACK~

23867772453949577638673204672488027113486979841148992157446034\

95311577477033299

44137427640458270099948143106280924336347013911498245284167859\

96607761771476233994006770106080475456661015482830880038635956\

18128469849886865

82869734506728408857670646187367840701450363010442084975363677\

76927489127818427124735230413757953097918761358229919317923335\

3546850589724563

14435783033057224190224067526217500711045449689908289174307459\

73420352036464461078659313878916939486093236699367612785917679\

78264370706748596

76219518479176804330617483693702169070570461167513995951771603\

. 15437650600544017420217970789135573545530048922944206333030398\

0826452486752343

39057907333091628756443751313956792336454871430361636888411903\

66734535303428276644443984266324863268312425515094793334960194\

96299472093280176

33713269934573232136020826742991836655590472158848681940828486\

25686782702318796654172703957782207550398421357982260463217571\

00121265799943710

69921134220631872208059007887490035018668902960747850777141543\

19049543017365942287891801006275473440066900746652591567349236\

8805266202636565

51196238094281378251652093753017210817286419746759610742659928\

94616199507515513250496229763102416668715378488669390981450426\

56875350837400915

6/4/79 Chapter XIV Page 178

t

,

1

•

EXAMPLES OF TRAPDOOR KNAPSACKS

44724883620928222090784519562821837484590672358050427322934764\

97494151350493273373028039004676025506580949966000913729267884\

31749339300260941

85206344330067581086837330930667257383968038059247870726076869\

07880727801972856294928972164592767702534838364099275193529311\

43754226678945

38970025165685322293070154507730744153272694441127356546088301\

19043923071104022138625700393102913674285153293383917226363619\

26355581688896977

35735016141627835378596877196728868785145457355564120606595359\

93993394406622491144746236939321856430045889991927582914696631\

91555560301521980

. 23750606001016588281369991225133189815540183312165150355918705\

14360762678975349752670346674852363030135963548192317645214176\

45809506052808766

12811316661104085102673572902768673537492304808275616527342662\

60692973884603159029815008726045088971127956724223143319836701\

11913499359574243

o

The simple (secret) knapsack vector is:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX

6/4/79 Chapter XIV Page 179

EXAMPLES OF TRAPDOOR KNAPSACKS

XXX

XX

XX

XXX

XX

XXX

XX\

XX

XX\

XXXXX

XX\

XXXXXXXX

. XX\

XXXXXXXXXXX

XX\

XXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXX

The w vector is:

6/4/79 Chapter XIV Page 180

EXAMPLES OF TRAPDOOR KNAPSACKS

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXX

XX\

XXX

XX\

XX\

XXX

XX\

. XX\

XXXXXXXXXXXX

The m vector is:

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXX

XX\

XX

XX\

XX\

6/4/19 Chapter XIV Page 181

EXAMPLES OF TRAPDOOR KNAPSACKS

xxx

XX\

XX\

XXXXXXXXXXXX

The i (inverse of w) vector is:

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX\

XXX

XX\

XX

XX\

XX\

XXX

XX\

XX\

XXXXXXXXX

6/4/79 Chapter XIV Page 182

