
Page 1 October 19, 1998

m

uthor’s
c pro-
t and
“pro-
riends,
to be
the

ght to
can’t

user
author

con-
ally,
g the

when-
ne a fair
Protected Shareware:

A Solution to the Software Distribution Proble
by

Ralph C. Merkle
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

merkle@parc.xerox.com
www.merkle.com

 Copyright 1993 by Xerox Corporation. All Rights Reserved.
This draft is being distributed for the purpose of feedback and commentary.

As a courtesy to the author, please limit its distribution.

Abstract

Shareware is abstractly a good concept but works poorly in practice because shareware a
can’t enforce their terms. We present a combination of inexpensive hardware, cryptographi
tocols, and internal software integrity checks which, when combined, provide a convenien
low cost enforcement mechanism for shareware distribution. We call this new approach
tected shareware.” Protected shareware supports casual copying of binary software by f
distribution of binary software over networks, or any other distribution method that happens
convenient. Software need not be “individualized” or “personalized,” a single version of
binary can be distributed to all users. At the same time, it enforces the software author’s ri
be fairly compensated by the users of the software. User’s that fail to pay for their software
continue to use it.

Introduction

The distribution of software fundamentally involves two parties: the user and the author. The
wants software available when and where it’s convenient, without unnecessary delays. The
of software wants fair compensation from the user.

In an ideal world the user would simply get a copy of the software from whatever source was
venient, whether that source was from the local store, from a network, or from a friend. Typic
after a short trial period, the user would pay the author the asking price or would stop usin
software. For some kinds of software, the user might be asked to pay a “transaction cost”
ever they accessed a database, or some other charging algorithm might be used to determi
price for the service being provided.

Page 2 October 19, 1998

hat is
hase
con-
ng to

ores.
that has
ightly
actu-
ning

user is
ing it

ses to
m is a
riend,
n page
ften a

case
ilable

is the
on-

hecks
nient,
t have
e’s is
us to

t. If a
l don-
to use
ysi-

d or
tion of
mati-

l token

Soft-
If everyone were honest we might approach this ideal world using shareware: software t
made available to any user in the world who wants it, with the admonition to pay the purc
price if the user likes it and wants to keep using it. Unfortunately, while this approach is very
venient for the user, the temptation to use the software without paying for it is often too stro
resist. Shareware is not (today) the path to riches that it “should” be in an ideal world.

To combat this, much commercial software is sold much like we sell physical objects: in st
The user comes to the store, browses through the available boxes and purchases the one
the best advertising, that is most touted in the computer journals, or simply has the most br
colored box. After taking it home, the user tries out the software and finds out whether they
ally like it. Returning software because the user “doesn’t like it” is often not possible, mea
users are sometimes stuck paying for software that doesn’t actually do what they want.

If a user visits a friend and watches that friend use some software that the user wants, the
systematically dissuaded from doing the obvious: copying the software onto a floppy and tak
home. While onerous copy protection systems are now relatively rare, software often refu
run unless the software is “individualized” with the users name and address. This mechanis
not-so-subtle reminder to the user that it’s illegal to pass a copy of the software along to a f
and if he does he might get caught. Before each execution, many programs ask “What’s o
37 of the user manual?” This effectively makes the software useless without the manual -- o
rather bulky document, easily lost and not available to the user in a digital format.

While it’s technically quite easy to make software available over a network (as is often the
for shareware), much commercial software is either unavailable over networks, or is ava
only in a “crippled” or “demo version” form.

A method that has been tried and has largely failed (except for very expensive software)
“dongle” (supposedly named after Don Gall, though this etymology is likely apocryphal). A d
gle is a relatively low-cost device that plugs into some port on the computer. The software c
for the presence of the dongle, and refuses to run if it’s absent. While not grossly inconve
this approach means that users who want to use several different types of software mus
some method of communicating with any one of several dongles: a daisy-chain of dongl
required. The use of dongles effectively links the program to a physical object, and so forces
treat the purchase and sale of the program much like we treat the sale of a physical objec
friend of the original user wants a copy of the software, they have to purchase an additiona
gle. This forces the new user to physically purchase a physical device before being allowed
a non-physical entity. By forcing us to treat software in the traditional framework used for ph
cal objects, this approach artificially limits the convenience and availability of software.

In short the most convenient methods of software distribution --making a copy from a frien
over the network-- are blocked either by technical means, social means, or some combina
both; primarily because of fears that the user won’t pay for the product. Products are syste
cally designed to be either unusable or less convenient in the absence of some physica
(such as a dongle, a “protected” floppy, the user manual, or whatever).

This “physicalization” of the software product creates another major drawback: added cost.

Page 3 October 19, 1998

a box,
ftware

ruck
ent
will

estric-
yed on
the
and
been

re as

ut is
ifferent
s dif-
not
, and
tware
ethods
ot be

e for
ware,
s not
ues to
tocols

ot be
any

gram
ipation

pay a
xima-
nd yet
ware is information, and when retail stores pretend that it is a physical object that comes in
they add a whole range of unnecessary costs to the product. Shipping 200 copies of a so
product is an intriguing exercise in foolishness, for what is truly being transmitted is bits. A t
filled with boxes filled with floppies all holding identical bit patterns is not the most effici
method of moving information. And yet, if the retail store doesn’t have enough copies, they
“stock out” and lose sales. The boxes also occupy shelf space, creating another artificial r
tion. Because of limited shelfspace only the most popular software packages can be displa
the shelf, thus limiting the available selection of software. Finally, users typically come to
store to examine, purchase, and physically walk off with the software. How much time
money is wasted by physically travelling to a store to purchase information that could have
more easily provided by a friend or over a modem or network?

There are other problems, but the fundamental point is clear: trying to buy and sell softwa
though it were a physical entity is the wrong model in almost every respect.

Work by Mori et. al.[1] on “superdistribution” shares many of the goals of the present work, b
distinct. He proposes to encrypt the software and as a consequence his proposal is quite d
from the current proposal, which does not require encryption of the distributed software. Thi
ference is likely to be crucial to the convenience and utility of actual use. While [1] did
describe the key distrubution method, if it is possible to freely distribute encrypted software
if this encrypted software can be used by any user, then the key for decryption of the sof
must also be available to any user. Mori proposes the use of stringent physical security m
to reduce the risk that key material might be divulged to the user, but system security cann
high if a single common key is put into all hardware systems.

Work by Cox[2] on superdistribution emphasizes a broader framework for collecting revenu
the use of any type of digital property, regardless of its nature (including books, course
applications, etc.) This framework does not specify whether any particular object is or i
encrypted (or what specific methods should be employed to protect it), but leaves such iss
the object's owner. The methods discussed in this paper (in contrast) focus on specific pro
for dealing with binary software by taking advantage of its particular properties.

Previous work by the author[3, 4] proposed protocols in which unsigned software would n
executed, but left the responsibility for checking the validity of the signature (and performing
other validity checks) with either the operating system or the underlieing hardware. The pro
was viewed as a passive object. In contrast, the present proposal requires the active partic
of the program both to check signatures and to verify the integrity of the program itself.

The Idea

How, then, can we treat software as what it is, information, and yet insure that the user will
fair price? As mentioned earlier, if everyone were honest shareware would be a good appro
tion to the ideal. Could we design a system with the distribution advantages of shareware a
somehow insure that users would have to pay for the software or else not use it?

The short answer is “Yes!”

Page 4 October 19, 1998

sking
soft-

it. A
s that

rk, or
l site,
e can’t
that
e soft-

g his
ling

ncy.
onve-

com-
om-
w to
e non-

puter
r the
uter
uter

s of
ling
ncy
ving
rther

to a
ignal to
s, the

e bill-
e bill-
In protected shareware, the software calls a set of accounting routines to specify the “a
price.” A simple request to the accounting routines might specify that the user could use the
ware free for the first 30 days, but after that would either have to pay $25.00 or stop using
user, by copying the software, would automatically copy the calls to the accounting routine
specify the payment terms the user must meet to use the software.

Equally clearly, if we assume the user’s computer is sometimes or often cut off from a netwo
that it is either uneconomical or inconvenient to constantly communicate with some centra
then the information provided by these accounting routines must be stored somewhere. W
charge a user for using software if we don’t know (or forgot) what was used. This implies
somewhere connected to the computer must be a non-volatile memory that remembers th
ware usage.

Unless we take additional precautions, it would be relatively easy for a user to avoid payin
bill. The user would simply erase the billing information. Thus, the memory holding the bil
information must be inaccessible to the user.

And finally, the billing information needs to be periodically passed along to a billing age
Passing along billing information need only be done infrequently: once a month using any c
nient form of communications (such as a low speed modem) would be quite sufficient.

This combination of requirements suggests the solution: we sell a cheap one chip “billing
puter” with some onboard non-volatile memory, some ROM and some RAM. The billing c
puter plugs into the “real” computer (an IBM PC or Macintosh, for example) using some lo
moderate speed port (a parallel or serial port). The ROM holds the accounting routines, th
volatile memory holds the usage data, and any program that wants to run on the main com
would first pass along the accounting information to the billing computer and then wait fo
billing computer to approve execution. If the user has been paying his bills, the billing comp
approves execution. If the user hasn’t paid his bills for the last few months, the billing comp
tells the software that execution is not approved and the software doesn’t run.

Periodically, the billing computer must get in touch with some billing agency. Any mean
communications will do. As an extreme example, the billing computer could write the bil
information to a floppy, which the user could then mail to the billing agency. The billing age
would then mail a floppy to the user, which could be read by the billing computer. Once ha
received confirmation that the bills had been paid, the billing computer would then permit fu
software to run.

More attractively, the billing computer might include a low-cost modem that would plug in
standard telephone outlet. For convenience, this modem would pass along the telephone s
other equipment when the modem was not in use (which would be most of the time). Thu
“telephone interface” would not interfere with normal use of the telephone line.

To insure that the user does not tamper with this communication, the billing computer and th
ing agency could use digital signatures to sign every message. The billing computer and th

Page 5 October 19, 1998

ublic
r and

ers of
tion

both
that
t let it
t, (4)
om
nded
y of

In this
billing

call
g the
illing

a few
ould
oved
ority

ring
sers
puter

onve-
uters

lling
suf-
ware
istant.
sures

pay
lties.
ublic
mined

r and
ing agency would each have their own secret signing keys, and each would know the p
checking key of the other. Thus, even though communications between the billing compute
the billing agency take place over insecure lines (which could pass through several lay
untrusted network software, if that proved desirable), the integrity of the billing informa
would be insured.

These considerations result in a billing computer with: (1) a one chip processor with RAM (
volatile and non-volatile) and ROM, (2) an onboard clock (so the billing computer can tell
three months have passed and the bills haven’t been paid) (3) two modular block plugs tha
“tap into” the telephone line, but normally pass along telephone signals from other equipmen
two parallel port plugs that similarly let the billing computer pass along information going fr
the computer to (say) the printer, but which can intercept information from the program inte
for the billing computer, (5) its own unique secret signing key and (6) the public checking ke
the billing agency.

An alternative protocol would be more secure, but perhaps less convenient for the user.
protocol, the software would refuse to run unless it received a signed message from the
agency. In this model, when the software was first run it would cause the billing computer to
up the billing agency, and the billing agency would return a digitally signed message givin
software authorization to run. This approach would result in delays simply to access the b
agency (a low cost modem dialing in to the central agency could easily result in delays of
minutes), and if the communications channel or the central billing agency were down it w
result in inability to execute the desired software. Unless the central billing agency appr
everyexecution of the software, there would still have to be some method of delegating auth
to the billing computer. We do not consider this approach further in this paper.

While building a low-cost modem into the billing computer is a convenient method of insu
that the billing computer can conveniently talk to the billing agency, it is not essential. If the u
computer already has a modem, the billing computer could use that modem. If the users com
is already connected to a network, the billing computer could use that network. It might be c
nient to have a single billing computer service many computers, particularly if those comp
were all connected to a reliable local network.

The billing computer would have to be “tamper resistant,” e.g., attempts to modify the bi
computer would have to result in erasure of the billing computer’s secret key. This would be
ficient to make the billing computer worthless, for without the secret key no protected share
would run on the system. There is an extensive literature on making computers tamper res
It seems likely that, for commercial purposes, relatively modest (and low cost) security mea
would be sufficient. If, on occasion, the secret signing key of some billing processoris compro-
mised, then it would be possible to fool protected shareware into running without having to
for it. Distribution of such keys would be illegal, and would subject the user to various pena
Further, if the software requires a relatively up-to-date certificate for the corresponding p
checking key, then the compromised key would no longer be useful after some pre-deter
period of time.

The user would also be provided with (insecure) software to interrogate the billing compute

Page 6 October 19, 1998

not be
t be
play
.

must
ions,

(or
le to

The
ncy)
ould
that

n then
nd an
d will

e pay-
terro-
tally
ould
a-

rma-

cure,
nd that
choed
billing

g com-

ure
r the
e dis-
undam-

limi-
e first
k, the

der-
r, the
determine the current software charges, the status of payments, etc. This software need
secure, for damaging it would provide no benefit to the user. The billing information canno
altered, it can only be examined. Thus, users can be provided with convenient “billing dis
software” which aids them in understanding the billing information and the billing procedure

While this provides a secure link between the billing computer and the billing agency, we
still protect the link between the software and the billing computer. Without further precaut
the user could buy an imitation “billing processor” that would permit all software to execute
provide a similar functionality by modifying the system software). The software has to be ab
verify who it’s talking to.

We do this by embedding the public checking key of the billing agency into the software.
billing processor can then provide a “certificate” to the software (signed by the billing age
which authenticates the unique public checking key of the billing processor. The software w
first confirm that this certificate was valid, and that it was reasonably recent (it might require
the certificate had been signed during the last six months, for example). The software ca
confirm the validity of any messages from the billing processor. The software can then se
insecure message to the billing processor describing the payment terms that it wants, an
expect to receive a digitally signed message from the billing processor which (a) echoes th
ment terms and (b) approves execution. The software would then continue to periodically in
gate the billing computer to verify that execution was still permitted, and would expect a digi
signed message each time confirming this. To prevent “replay” attacks, the software w
include “random” information that the billing computer would also have to sign. (This inform
tion need not be truly random, but there must be a low probability of choosing the same info
tion twice).

The reader should note that communications from the software to the billing computer is inse
but that this is only a minor nuisance. In essence, it means that the software must dema
every message to the billing computer be echoed by the billing computer, and that the e
message must be digitally signed. Thus, the presence of an authenticated channel from the
computer to the software can be used to insure that messages from the software to the billin
puter are correct.

This provides complete securityif we assume that the software has not been modified. To ins
this, the software must include internal “integrity checks.” The simplest integrity check is fo
software to compute a checksum over its own code. If this checksum fails, then the softwar
plays a message to the user “This software has been damaged, please delete and load an
aged copy.”

Of course, some clever user might find this simple integrity check and modify the binary to e
nate it. To prevent this, the software can have a second integrity check that verifies that th
integrity check has not been tampered with. If the user modifies this second integrity chec
software can have athird integrity check that checks the second integrity check.....

Ultimately, a clever user can defeat such integrity checks. It is possible, after all, to fully un
stand the binary version of the software and then remove all the integrity checks. Howeve

Page 7 October 19, 1998

f any)
The

defeat

did
ea-
e dis-
cted
if they
ve to
estab-
this is
ate

lling
can

agni-
m-

uter,
ss of
rately

The
is dis-
r who

hasing
ing a
stant
y, and

revent
a-

com-
lling
igned
ued.

) and
mes-

nica-
cost to the user of understanding the binary can likely be made high enough that very few (i
users will bother. Thus, the protection at this level is “good enough” rather than absolute.
system as a whole will produce excellent results as long as the great majority of users don’t
the internal integrity checks, which seems very likely.

Distribution of modified binaries (which failed to perform the appropriate integrity checks and
not bill appropriately) would be illegal. While limited distribution of such binaries would be f
sible, any widespread distribution would be readily detected and legal action taken against th
tributors. The distributor would be unable to use the billing mechanisms provided for prote
shareware, and so would have to establish a different distribution and charging mechanism
hoped to make any profit. Thus, to succeed financially, such an illegal distributor would ha
(a) defeat the integrity checks, (b) advertise in a covert fashion to avoid legal action and (c)
lish a payment mechanism other than that normally used for protected shareware. While
feasible in principle, the practical difficulties are likely to reduce financial losses to the legitim
author to an acceptable level.

A relatively simple method of cheating the billing company would be to (a) purchase a bi
computer, (b) run up significant software bills, and then (c) destroy the billing computer. This
be controlled by several methods. The simplest would be to establish a credit limit on the m
tude of the total software bill that an individual billing computer will accept. This could be co
bined with a fixed charge (perhaps equal to the credit limit) for the loss of the billing comp
similar in spirit to the “you break it you buy it” sign seen in some stores. In any event, the lo
the billing computer can be reliably detected, the magnitude of the problem can be accu
assessed, and appropriate corrective measures can, if necessary, be adopted.

System Summary

There is a billing agency with a well known public checking key and a secret signing key.
well known public key is embedded in “protected shareware,” and the protected shareware
tributed over whatever communication channels are most convenient. Each computer use
wishes to use protected shareware must have access to a “billing computer,” either by purc
one and plugging it into some convenient port on his computer or alternatively by connect
single billing computer into some local network to which his computer has essentially con
access. The billing computer has its own unique secret signing key and public checking ke
also has a certificate signed by the billing agency to validate its public checking key.

The protected shareware sends billing information along with a random string (a nonce to p
replay attacks) to the billing computer. The billing computer digitally signs the billing inform
tion and returns it to the software along with a certificate. The software checks the billing
puter’s certificate and verifies that the billing computer has a correct copy of the bi
information, and then begins execution. Periodically, the software requires an additional s
message from the billing computer to insure that billing has not been prematurely discontin

The billing computer regularly summarizes the software charges (perhaps once a month
sends them by whatever communications channel is convenient to the billing agency. This
sage is digitally signed by the billing computer to prevent tampering. A convenient commu

Page 8 October 19, 1998

et the
ived a
ould
or a

n, but
tions channel would be a low cost modem. Insecure software provided to the user would l
user interrogate the billing computer and see the summary. When the billing computer rece
digitally signed message from the billing agency confirming receipt of the months bills, it w
know the bill had been paid. If the billing computer fails to receive confirmation of payment f
few months, it cuts off software service.

This is illustrated in figure 1.

The protected shareware uses internal integrity checks to prevent unauthorized modificatio

Protected
program

User A’s computer

User A’s

Billing info: “Pay 50 cents to Fred’s Fine Software”,
Nonce: 92849606983629590

“The billing info is: pay 50 cents to
Fred’s Fine Software.
The nonce is: 92849606983629590.
You are authorized to execute.”
Signed: the billing computer with pub-
lic key 8347234234

Certificate: “Public key 8347234234 is
valid until 12/31/95”
Signed: The billing agency.

The billing agency

1
2

3

“User A’s total software usage
this month, 5/95: 50 cents for
use of Fred’s Fine Software”
Signed: the billing computer
with public key 8347234234

4

“User A paid his 50 cent bill
this month, 5/95. Billing
computer 8347234234 can
keep running his software”
Signed: The billing agency.

Figure 1
Note that steps 1 and 2 occur immediately while steps 3
and 4 could occur much later (perhaps monthly).

Also note that message 1 is insecure (not signed).

billing computer

The billing agency’s
public key is
2384927452

Page 9 October 19, 1998

ikely

repre-
re pro-

only
tection
main
tion if
e soft-
tware
ld tell
illing
ress
from

ourts,

manu-
ethod
essi-
g soft-
kes
ach
user at

o the
y soft-
larly if
g sys-
ble to
ould
secure
here

ecure

ecure
e or
pro-
such
is otherwise unprotected. While unauthorized modification is in principle feasible, it seems l
that it will be difficult enough to deter most users, which should be sufficient.

This still leaves the user vulnerable to software provided by unscrupulous vendors who mis
sent the charges. Several methods of protecting the user are available. First, the softwa
vided over the net could be digitally signed by the author. The user could then use software
from reputable authors who did not engage in such practices. This also provides some pro
against viruses. Second, the billing computer could (through additional software on the
computer) inform the user of the price before the software was executed, and block execu
the user thought the price was too high. Third, because the user would have a copy of th
ware, it would be easy to verify that the software was misrepresenting the price. The sof
might say “Pay only $5.00 to run this software!” in a message displayed to the user, but wou
the accounting routines “Charge the user $5,000 dollars.” The user could complain to the b
agency, which could readily verify the duplicity of the software and take appropriate action (p
charges against the author, for example, or systematically remove the offending software
publicly accessible archives). Fourth, the billing agency could let some other agency (the c
for example) deal with disputed bills.

Other hardware implementations

Once protected shareware catches on, it would be a relatively simple matter for computer
facturers to include the billing computer in the design of the main computer. The simplest m
of doing this is to provide a small “secure kernel” which has protected memory that is inacc
ble to the user (except through the approved accounting routines). While secure operatin
ware is in general difficult to write, a small secure kernel with limited functionality (it just ta
care of the billing information) would be relatively easy to write even today. This appro
means the hardware component of the protected shareware system could be provided to the
a very low cost.

Software only implementations

While less secure, it would be possible to embed the operations of the billing computer int
operating system. This approach has the advantage that it could be implemented easily b
ware changes in the operating system rather than by the addition of new hardware. Particu
the operating system were relatively complex, and if new versions or updates to the operatin
tem checked the old version to remove any unauthorized modifications, it would be possi
rapidly make the capabilities described here widely available, with a level of security that w
be adequate for many applications. As the same interface could then be used for more
hardware versions, this would provide a migration path from today’s insecure environment (w
the kind of billing computer described here is not available) to a future environment where s
hardware implementations were widely available.

Programs desiring higher security could insist that the billing computer be implemented in s
hardware -- for this purpose, the billing computer’s certificate would identify it as a softwar
hardware implementation. (More generally, the certificate could identify the level of security
vided by the implementation of the billing computer). Programs could then decide (based on

Page 10 October 19, 1998

urity)

are to
with

e back
user
tware
e that
e could

t was
round-
agree
agina-

tware’s
user is
Distri-
ility to
d distri-

e had.
user.

the
ed for
those
those
t can

inue
factors as the likely theft rate and the market share of computers providing that level of sec
whether or not to run.

Negotiating the Price

While we have considered only the simplest case, protected shareware allows the softw
charge whatever price it feels like. For example, the software might initially present the user
the message: “$25.00 to use this software.” After the user declined, the software might com
and say “Only $15.00 to use this software with the “SAVE” feature disabled.” When the
again declines, the software might say “How about a penny a minute?” Not only can the sof
negotiate a price, it can vary the price depending on circumstances. A scientific packag
crunched numbers could charge more on a faster processor, while a database packag
charge more if there were more items in the database.

Ultimately, the ability of the author and the user to agree on any “deal” that they both though
reasonable would be a major boon to the software market. Today, the technical issues sur
ing software distribution and use sharply constrain the terms that the author and user can
upon. With protected shareware, the terms can be as flexible as their needs, desires, and im
tions.

Summary

Protected shareware provides the distribution advantages of shareware but allows the sof
author to enforce the purchase price and, more generally, the terms of the purchase. The
free to accept or reject those terms, but cannot use the software in violation of those terms.
bution overhead is lower, payments to the author are more direct, convenience and availab
the user are higher, software authors have easier access to larger markets, and the sale an
bution of low volume software becomes easier and more profitable.

Protected shareware avoids many problems that other software distribution methods hav
The programs can all be identical: there is no need to “customize” each program for each
There is no physical “artifact” that must follow the software to insure that it works. While
user must purchase and install the billing computer, once installed it is left in place and is us
all protected shareware. A single billing computer could be used for many computers if
computers were connected by some reliable network. Security is difficult to defeat, even for
who fully understand how the system works. The user is not forced to wait for “approval,” bu
download or copy any software from anywhere and run it immediatelyif they are willing to pay
for it. Existing software is undisturbed: programs that don’t use the billing features will cont
to run as before.

In short, the only inconvenience imposed on the user is the need to pay his bills.

REFERENCES

1. Superdistribution: The Concept and the Architecture, by Ryoichi Mori and Masaji Kawahara,
The Transactions of the IEICE, Vol. E 73, No. 7, July 1990, page 1133-1146.

Page 11 October 19, 1998

,

party
2. Superdistribution, by Brad Cox, 1996, Addison-Wesley

3. Secrecy, authentication, and public key systems, by Ralph C. Merkle, UMI Research Press
1982.

4. Unpublished proposal to prevent unapproved “cartridge” based software (e.g., third
game cartridges) from running on a manufacturer’s base unit; by Ralph C. Merkle, 1981.

