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EVALUATORS FOR ATTRIBUTE GRAMMARS 

INSTRUCTIONS TO THE READER 

The reader who is unacquainted with 

advised to read the paper slowly. 

feasible ••• ) He might also wish to read 

attribute grammars is 

(No other method will be 

Knuth[1], which intro-

duces most of the concepts in more detail. The reader who knows 

what an attribute grammar is, but is somewhat shaky on the topic, 

is advised to skim the introduction to refresh his memory. 

Researchers in the field are advised to read the abstract, ignore 

most of the introduction, but read the last two pages of that 

section, (starting on page 12), pay close attention to the defin

itions, and then skim the rest of the paper, paying particular 

attention to the algorithms, and reading the text where the algo

rithms are opaque. The main results of the thesis consist of 

three algorithms: 

1.) a circularity test which is usually linear. 

2.) An algorithm to rank the attributes in time N log N, in 

primary memory bounded by the depth of the parsing stack, 

and using a tape as secondary storage. 

3.) An algorithm to evaluate the attributes, which adds N log 

N time, adds small primary memory, and uses a disk as a 

secondary storage device. A bound on the size of an at

tribute is assumed. (It has to fit in primary memory ••• ) 

Both 2 and 3 assume an arbitrary attribute grammar. 

3/22/77 Page No. 2 



EVALUATORS FOR ATTRIBUTE GRAMMARS 

Ralph C. Merkle 

ABSTRACT 

It is possible to evaluate an arbitrary attribute grammar in 

an amount of primary memory bounded by the depth of the parsing 

stack, and with a disk as a secondary storage device. This 

evaluation will require time N log N. (This is exclusive of the 

memory and time requirements of the semantic functions.) The 

method appears to offer value as a research tool: it allows the 

rapid production of compilers for arbitrary attribute grammars 

that are not inefficient. It does not appear to be efficient 

enough for practical applications. In this, it is marginal. For 

some applications, it might prove tolerable. 

The method used to evaluate the attributes with a small pri-

mary memory appears 

attribute grammars. 

to have applications outside of its use in 

In particular, the algorithm obtained will 

evaluate an arbitrary address trace with a small primary memory. 

This result appears to be novel. 

In addition, it is shown that the circularity test for at-

tribute grammars, while in 

can, in almost all cases of 

time. 

general of exponential complexity, 

interest, be performed in linear 
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INTRODUCTION . 

Context Free Grammars, (CFG's), have proven extremely use

ful, and have gained widespread acceptance for the definition of 

the syntax of programming languages. The presentation of a new 

language would seem incomplete without an appendix giving its 

syntax, typically in BNF. A universally accepted, well defined, 

and easily comprehensible method for describing syntax has been 

achieved, and much theoretical work has used this solid basis as 

a starting point for the automatic construction of parsers, used

in syntax driven compilers. This happy state of affairs does not 

exist with respect to the semantics of programming languages. 

Many methods of defining the semantics of a language have been 

proposed, but for various reasons, none of them appears to have 

dominated the others, nor have any of them gone terribly far in 

replacing English as a semantic meta-language. Naturally, every

one has rushed to fill this gap, in the hopes that their pet se

mantic meta-language would suffer the happy fate of CFG's, aiding 

humanity and insuring the author's fame and fortune. Knuth 

Joined this group of would be saviors with a paper in which he 

proposed the use of attribute grammars, (which he also defined). 

The author, after reading Knuth's paper, became enamored of at

tribute grammars and decided that here was the ideal semantic 

meta-language. 

An attribute grammar is a method of attaching a "meaning" to 
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a given phrase in a language. The concept of an attribute gram

mar is an extension to the concept of a context free grammar. A 

phrase in a context free language has an associated parse tree. 

The attribute grammar works directly with the parse tree. It at-

taches "attributes" to each of the symbols in the parse tree: 

these attributes are defined to be the meaning of the associated 

symbol. The following grammar for expressions can serve as an 

example. 

E · . - E + P · . -
E · . - p · . -
p · . - identifier · . -
p · . - ( E ) · . -

A sample sentence in this language might be: A+B+(C+D). The at-

tributes that we might wish to associate with E and P might be 

the type of the expression, and the code needed to evaluate the 

expression. Every occurrence of E in the parse tree would have 

two attributes: type and code. The type might have two values, 

integer or real, while the code might be a sequence of machine 

language instructions. In this simple example, P would have the 

same two attributes. Every occurrence of P would have associated 

attributes defining the type and the code required to evaluate 

it. (In general, this need not be the case. Different symbols 

can have different attributes.) 

The attributes for a given node in the parse tree are de-

fined in terms of the attributes of the offspring of that node, 

and also in terms of the attributes of the parent of that node. 
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Arbitrary semantic functions are allowed to define each attri

bute. Given the production: 

E ::= E + P 

we might have a semantic function, rtype, which determines the 

resultant type of the left hand E, given the types of the right 

hand E and the P. We might say: 

E.type . -. - rtype(E.type,P.type) 

(The double use of "E" renders this ambiguous, but we assume the 

reader can understand what is meant. More precise definitions 

and usage will be considered later.) Notice that this semantic 

function is tied to a particular production. In general, each 

production will have an associated set of definitions which will 

allow the computation of various attributes of the symbols in the 

production. Also note that, in general, we might define attri-

butes of symbols in the right part in terms of attributes of sym-

boIs in the left part, even though this has not been done in this 

example. 

The principal advantage of attribute grammars is the ease 

with which concepts can be described, and the close link between 

the semantic definitions, and the actual grammar. Because an at-

tribute grammar includes, as an integral component, a CFG, the 

semantics of the language are tied quite closely to the syntax, 

and no room is allowed for ambiguity about the meaning of a par-

ticular syntactic construct to creep in. (Semantic definition 

languages which do not include a grammar as an integral component 

can result in rigorous semantics, but no clear connection between 
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the rigorous semantics and the actual language.) Attribute gram

mars are also quite flexible, allowing the use of arbitrary se

mantic functions. The semantics of any language, as long as the 

semantics are effectively computable, can be cast into the form 

of an attribute grammar. 

The power of attribute grammars has proven a mixed blessing. 

On the one hand, it is easy to write an attribute grammar for a 

language, but on the other hand, there is no guarantee that it 

will be possible to find an efficient implementation of the at

tribute grammar. Converting an attribute grammar into a working 

compiler is a non-trivial feat. While the concept of an attri

bute grammar has gradually been gaining acceptance, the nasty 

problems of implementation have kept them from practical use, and 

forced them into the role of an interesting semantic definition 

language, i.e., an academic toy. Many people have recognized 

this problem, and some have been sufficiently brave to leap into 

the fray. The objective is to produce a practical compiler

compiler, based on attribute grammars. The author has attacked 

this problem, and it is the major purpose of this thesis to ac

quaint the reader with the results. 
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Knuth's original paper[l] recognized two main problems which 

attribute grammars give rise to. First, given an attribute gram

mar, how do you evaluate the attributes? This requires that the 

attributes be evaluated in some particular order, subJect to the 

constraint that all the attributes which serve as arguments to a 

semantic function must be defined before that semantic function 

is invoked. This problem is not as trivial as it sounds, be

cause, in general, any attribute in the parse tree can be defined 

in terms of any other attribute in the parse tree. Untangling 

this plate of spaghetti can be involved. The other problem that 

Knuth defined was the circularity problem. The question is Just 

this: Given an attribute grammar, is it impossible to produce a 

parse tree in which the attributes are defined in terms of each 

other in a circular fashion? That is, is it possible to evaluate 

all the attributes for an arbitrary parse tree? 

Knuth proposed solutions to both of these problems, but did 

not concern himself with computational efficiency. His proposed 

solution to the circularity problem is, in the worst case, of ex

ponential complexity. Worse, the circularity problem is of int

rinsically exponential complexity. The work of Jazayeri[q,S] 

shows that any algorithm to solve the circularity problem must 

be, in the worst case, of exponential complexity. In this thesis 

we remove much of the sting from this result by proposing an al

gorithm which is linear in most cases of interest, showing that 

the exponential cases are essentially pathological. 

Knuth's proposed solution to the problem of evaluation of 

10/20/77 Page No. 8 



EVALUATORS FOR ATTRIBUTE GRAMMARS 

all of the attributes of a parse tree is quite simple. Put the 

entire parse tree in memory. The semantic functions impose a 

partial ordering on the attributes, the order in which it is pos

sible to evaluate the attributes. Using an algorithm proposed by 

Knuth[2], convert this partial order into a total order, (in 

linear time, but also linear space, i.e., all the attributes have 

to be in main memory at once.) Given a total order which satis

fies the constraints of the partial order, evaluate each of the 

attributes, in accordance with the total order. During the pro

cess of evaluation, any attribute which has been defined must be 

kept in main memory, for it could be used, at any time, in defin

ing another attribute. The method, while quite efficient in 

terms of speed, and also completely general, in that it works for 

all attribute grammars, uses a great deal of memory. This shar

ply reduces its widespread applicability. It would be highly 

desirable to devise algorithms which were efficient, but which 

used much less memory. Such algorithms need not handle all at

tribute grammars. If such algorithms handled a significant sub

set of the attribute grammars efficiently, then this would be 

sufficient for many purposes. Ideally, an efficient algorithm, 

which used little memory and executed quickly, and which would 

handle all attribute grammars, would be desirable. 

Previous work has tended to focus on either efficient 

methods of dealing with a subclass of the attribute grammars, or 

inefficient methods of dealing with all possible attribute gram

mars. Fang[8] proposed a method in the latter category. The 
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work of Fang was never intended to be efficient, in terms of ei

ther space or time, but was intended to provide a highly flexible 

research tool. It is, in fact, more flexible than the concept of 

an attribute grammar given by Knuth. This is because circular 

definitions can sometimes be resolved, if the functions involved 

do not use the information in a circular fashion. To give an ex

ample: 

A=AND(FALSE,B) 

B=OR(FALSE,A) 

In this sequence of definitions, A and B are defined in terms of 

each other. In spite of this, it is clear that A=FALSE, and that 

the value of B is not, in fact, needed in the evaluation of A. 

Fang's system would allow this. (provided that the AND function 

checked its left argument first, and if it proved to be false, 

ignored its right argument.) 

In the methods proposed by Bochmann[3] and Jazayeri[4], on 

the other hand, the objective has been to define a subclass of 

the attribute grammars for which it is possible to produce effi

cient evaluators. In this, they have succeeded. The method of 

Jazayeri is probably superior, because of its greater power, and 

comparable efficiency. If the left to right bias is built into 

the hardware, as it appears to be on some machines, then 

Bochmann's method is superior. (Jazayeri's method allows right 

to left passes.) It should be pointed out that the method 

described by Bochmann in [3] is not, strictly speaking, left to 
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right. He appears to have made a mistake, and included too many 

attribute grammars in the class which he claims he can handle 

with a fixed number of left to right passes. For the first pass 

of his algorithm, all is well. On subsequent passes, however, it 

might be that an attribute, evaluated on a previous pass, and 

thus supposedly available, is in the wrong position, and thus not 

available without additional computation. This additional compu

tation would involve exactly the concepts that Jazayeri used in 

his alternating semantic evaluator. To put it another way, Boch

mann is traversing a tree. Some attributes he evaluates upon 

first reaching a node, other attributes he evaluates upon leaving 

the node. These latter attributes will appear in their correct 

end-order position, not in the pre-order position that is desir

able. Because some attributes from the previous pass appear in 

end-order positions, they cannot be used to evaluate attributes 

that appear in pre-order in the current pass. Oops. 

The original objective of the current work was to design al

gorithms which would allow the efficient evaluation of an arbi

trary attribute grammar in a small, fixed, primary memory with 

one tape drive as a secondary storage device, and in linear time. 

It has proven necessary to relax these criteria somewhat. In 

particular, the problem has been divided into phases, and the 

following results have been obtained. 

PHASE 1.) Ranking of the attributes. It has proven possible 

to rank the attributes in 4 passes for an arbitrary at

tribute grammar, using an amount of primary memory pro-
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portional to the depth of the parsing stack. These 

passes are alternating left to right, right to left. 

PHASE 2.) Sorting the attributes, once they are ranked. 

Many well known algorithms are available to deal with 

this problem, typically running in time N log N. It 

should be noted that the sorting problem, given a rank

ing, can be done in fewer passes than a general purpose 

sort. 

PHASE 3.) Evaluating the attributes, once they have been 

sorted. It has proven possible to evaluate the attri

butes in time N log N, in a fixed primary memory, with 

a disk as a secondary storage device. This is subject 

to the restriction that it is possible to fit the at

tributes into primary memory for the actual evaluation 

of each one. That is to say, if a semantic function 

operates on 4 attributes, and produces a 5th, then it 

is necessary that all 5 of these attributes fit into 

the primary memory. This puts a bound on the size of a 

given attribute. This result is also subject to the 

restriction that it does not include the time spent in 

the semantic functions, nor the space that they use. 

If the semantic functions take forever to execute, then 

this method will not take time N log N, but will, in

stead, add time N log N to the execution time of the 

semantic functions. If the semantic functions need huge 
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gobs of memory, then the additional memory requirements 

are fixed, but the total core requirements might be ar

bitrarily large. In essence, this algorithm uses the 

disk drive to simulate log N sequential storage dev

ices, (tape drives.) Thus, if an installation is wil

ling to devote 10 or 20 tape drives to the task, it is 

possible to evaluate gargantuan programs. It is not 

clear that this will occur in practice. It is possible 

to improve the efficiency of this algorithm if we give 

it a primary memory of size log N. (It should be men

tioned that the "fixed" primary memory mentioned before 

neglects the log N factor that appears because it re

quires log N bits to represent a number of size N. It 

should also be mentioned that the N for this phase is 

more closely related to the total size of the evaluated 

attributes than it is to the size of the input string.) 
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AN EXAMPLE 

In the following section, we give a detailed example of an 

attribute grammar. The discussion has been adapted from 

Knuth[1]. 

Suppose we are given the following grammar for binary 

numbers: 

B · . - 0 · . -
B : : = 1 

L · . - B · . -
L · . - L B · . -
N · . - L · . -
N · . - L L · . -

(The symbols 0,1, and. are the terminals; the nonterminals are 

B, L, and N standing respectively for bit, list of bits, and 

number.) This grammar says in effect that a binary number is a 

sequence of one or more O's and 1's, optionally followed by a ra-

dix point and another sequence of one or more D's and 1's. 

We can define the following attributes for each symbol: 

Each B has a "value" B.v which is a rational number. 

Each B has a "scale" B.s which is an integer. 

Each L has a "value" L.v which is a rational number. 

Each L has a "length" L.I which is an in teger • 

Each L has a "scale" L.s which is an in teger. 

Each N has a "value" N.v which is a rational number. 
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These attributes can be defined as follows: 

SYNTAX SEMANTICS 

B · . -· . - B.v · - 0 · -o 

B · . -· . - 1 B.v := 2 A B.s 

L · . -· . - L.v .- B.v, B.s · - L.s, · - · -B 

L.I .- 1 . -
B L 1. v · - L2. v + B.v, B.s .- L 1 • s , · - . -L1 · . -· . - L2 

L2.s · - L 1 • s+ 1 , L 1 .1 := L2.l + 1 · -
N.v .- L.v, L.s . - 0 .- . -N : : = L 

L2 N.v · - L 1 • v + L2. v, · -N · . -· . - L1 

L 1. s · - 0, L2.s · - -L2.1 · - · -
In the semantic rules shown above, the attribute on the left 

hand side of the assignment statement is defined by the expres

sion on the right hand side of the assignment statement. The 

reader should note that some attributes of symbols in the right 

part are defined in terms of other attributes in the production, 

including attributes of the left part, while some attributes of 

the left part are defined in terms of attributes in the right 

part. This provides a two way flow of information in the parse 

tree. We are using both synthesized attributes, i.e., attributes 

in which the flow of information is towards the root of the parse 

tree, and inherited attributes, or attributes in which the flow 

of information is towards the leaves of the tree. The attributes 

B.v, L.v, L.I, and N.v are synthesized, i.e., are involved in the 

upwards flow of information, while B.s and L.s are inherited, and 
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bring information down towards the leaves. (The parse "tree" is 

thought of as being upside down, with its root in the air, and 

its leaves on the ground.) The evaluation of all the attributes 

in this grammar would involve going up and down the parse tree. 

How does this grammar work? For a given binary number, 

100101.1010001, how would this grammar produce the "meaning"? 

The "meaning" of this string of O's and 1's is the value attri

bute associated with the distinguished symbol, N. That is, N.v 

is defined to be the meaning of the string. In essence, the 

grammar associates a scale factor with each binary digit in the 

string, and multiplies this scale factor by the value of the di

git. Each digit then contributes the proper amount to the value 

of the entire string, which is obtained by summing the value con

tributed by each digit. The scale associated with a digit cannot 

be determined by examing the digit alone. The scale associated 

with a given digit can only be determined by examining the con

text around the digit, i.e., by counting from the radix point. 

It this feature of collecting information from all parts of the 

string, and using it to aid in the definition of local com

ponents, which gives attribute grammars their power. The meaning 

of a sub-tree is context dependent. An illustration of this is 

given in the diagram, which is from Knuth[1]. The reader who has 

had difficulty in following the discussion is advised to stare at 

the diagram, and trace through the application of the various se

mantic functions, along with the flow of information in the parse 

tree. 
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DEFINITIONS 

We now give the formal definitions which will be used in the 

rest of the paper. 

To begin with, an attribute grammar utilizes a CFG as an in

tegral component. We therefore start by defining a grammar. A 

grammar is a 4-tuple, G = {V,N,S,P}. V is a finite vocabulary of 

terminal and non-terminal symbols. N, a subset of V, is the set 

of nonterrninal symbols. S is the distinguished symbol. P is the 

set of productions. In the following discussion, P[i] will 

denote the ith production, P[i,j] will denote the jth symbol in 

the ith production, and P[i,O] will denote the left part of the 

ith production. We shall denote the rank of a set by Iset/. IGI 

is 4, l{a,b,c}1 is 3, IPI is the number of productions, IP[i]1 is 

the number of symbols in the ith production. (note that IP[i]1 = 
1 if the right part is empty.) This gives the following defini

tions. 

3/22/77 

V 

N 

S 

P 

P[i] 

P[i,j] 

P[i,O] 

the set of terminals and nonterminals. 

The set of nonterminals. 

The distinguished symbol. 

The set of productions. 

The ith production. 

The jth symbol in the ith production 

The leftpart of the ith production. 
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ISetl The rank of the Set. 

IPI The number of productions. 

IP[i]1 The number of symbols in the ith production. 

To take the 4th production of our sample grammar as an example, 

P[4] = L 

P[4,O] = L 

P[4,1] = L 

P[4,2] = B 

IP[4]1 = 3 

.. -.. - L B 

We associate with each symbol X in V a finite set of synthesized 

attributes, S(X), and a finite set of inherited attributes, I(X). 

We require that I(S)={}, that is, the distinguished symbol has no 

inherited attributes, and likewise, for each terminal T, S(T)={}, 

that is, no terminal has any synthesized attributes. 

S(X) The synthesized attributes of X. 

I(X) The inherited attributes of X. 

The semantic functions for each production must allow us to 

define all the synthesized attributes of the left part, and all 

the inherited attributes of the right part. We assume that all 

inherited attributes of the left part were defined in the produc-

tion "above" this one, i.e., nearer the root, while the syn-

thesized attributes of the right part have been defined in the 

production below this one. The semantic functions can take any 

attributes in the production as arguments. Each synthesized at-

tribute of the left part, and each inherited attribute in the 
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right part, must appear on the left hand side of an assignment 

statement exactly once. If it does not appear, the corresponding 

attribute is undefined. If it appears more than once, the attri

bute is overdefined. 

We also need to define clearly notation for the set of at

tributes associated with each nonterminal, each production, and 

with each possible parse tree. 

X.att 

T.att 

For X in V, this is the set of attributes associ

ated with X. 

This is defined to be the same as Root(T).att. 

T.att is simply a notational convenience. 

P[i].att The set of attributes associated with the 

ith production. (We might wish to refer to 

P[i].att as a multiset, or bag. If a symbol oc

curs twice in the rightpart, the corresponding 

attributes will occur twice in P[i].att.) 

Let T be any derivation tree obtainable in the grammar, hav

ing only terminal symbols as labels of its terminal nodes, but 

allowed to have any symbol of V, (not only the start symbol, S) 

as the label of the root. 

We also will wish to refer to sub-trees of a parse tree, and 

we will do so by simple indexing: T[1] is the first (leftmost) 
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subtree, T[2] is the second subtree, and so forth and so on. If 

we wish to refer to the symbol which is at the root of a parse 

tree, we will just say Root(T). 

T[i] The ith subtree of T. 

Root(T) The symbol which is at the root of T. 

Rootproduction(T) 

root of T. 

The production which is at the 

In the course of the paper we shall also be needing various 

dependency graphs. A dependency graph is a graph whose nodes are 

attributes, and whose arcs indicate the semantic dependencies 

among those attributes. Several different kinds of dependency 

graphs will be defined and used. In general, we shall use D(arg) 

to indicate some form of dependency graph. The type of "arg" 

will indicate the type of dependency graph. 

D(production) A dependency graph whose nodes are taken 

from production.att, and whose arcs represent the 

direct semantic dependencies in the production. 

D(T) A dependency graph whose nodes are taken from the 

derivation tree, T, and whose arcs represent the 

direct semantic dependencies among the attributes 

in T. 

DTOP(T) A dependency graph whose nodes are taken from 

Root(T).att, but whose arcs represent the in

direct semantic dependencies in T. (a,b) is in 

DTOP(T) iff a,b are in Root(T).att and (a,b) is 
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in D(T)*, (where * represents the transitive clo

sure operation.) That is, there must be a direct

ed path from a to b in D(T). If T is a terminal, 

then DTOP(T)={}. 
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CIRCULARITY 

We shall first briefly review Knuth's circularity test, and 

then give a modified version that is linear for the class of 

grammars under consideration. 

Knuth makes the observation that the circularity problem for 

attribute grammars is equivalent to the problem of determining if 

there exist oriented cycles in any DTOP(T). That is, an attri

bute grammar is circular iff there exists an attribute, a, and a 

derivation tree, T, such that (a,a) is in DTOP(T). This is 

equivalent to saying a grammar has a circularity iff there is a 

directed cycle in D(T), for some T, or to saying that there is 

some derivation tree, T, and some attribute, a, such that (a,a) 

is in D(T)*. 

To determine the dependency graph, DTOP(T), associated with 

a parse tree, T, would seem to require that we compute the tran

sitive closure of D(T). (Recall that DTOP(T) is defined in terms 

of D(T)*). Because of the particular nature of attribute gram

mars, however, it is possible to simplify this computation. We 

observe that we can compute D(T) knowing only 

D(Rootproduction(T» and the dependency graphs derived from the 

sub-trees, DTOP(T[1]), DTOP(T[2]), etc. etc. That is, all we 

need know is the dependencies of the production at the root of T, 

and the transitive closure of the dependencies of the sub-trees. 

Just as we can factor the problem at the root into a problem in

volving the separate subtrees, and limited interaction among the 
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T[i], so we can apply the same concept recursively to each sub

tree in turn. That is, we can factor the algorithm for computing 

DTOP(T) into an algorithm which computes DTOP(T[i]) for each of 

the sub-trees, and then uses that information to compute DTOP(T) 

for the whole tree. To be a trifle more precise, we can write a 

recursive routine, CLOSE(T), which will compute DTOP(T) • We can 

write the code for Close(T) as follows: 

Function Close(T); 

Begin 

Temp := I}; 

For I := 1 to IRootproduction(T)1 - 1 Do 

Temp := Temp union Close(T[I]); 

Temp := Temp union D(Rootproduction(T»; 

Temp := Normalclosure(Temp); 

Return({(a,b): a,b are in Root(T).att and (a,b) is in Temp}); 

End. 

(The function, Normalclosure, computes the transitive closure of 

a relation (which can also be viewed as a directed graph) using 

normal methods, e.g., Warshall's algorithm.) The algorithm uses 

the "union" operator to refer to the union of two directed 

graphs. The union of two graphs is just the graph consisting of 

the union of the set of nodes, and the union of the set of arcs. 

It should be noted that all graphs in the algorithm are sub

graphs of D(T). This implies in particular that the statement 

Temp := Temp union D(Rootproduction(T»; 
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"pastes together", in Knuth's terms, the different sub-graphs in 

Temp. 

This algorithm will determine only if a particular deriva

tion tree has a circularity. It will not determine if a deriva

tion tree with a circularity exists. An analysis of this algo

rithm, however, leads one to the test for circularity for an at

tribute grammar. The key observation is that the number of pos

sible values that Close(T) can take on is finite. Because of 

this finiteness, the algorithm can be analyzed by exhaustive 

search. We can determine what the algorithm will do in all pos

sible cases, because the number of cases, though large, is bound

ed. 

We observe that Close(T) = DTOP(T), that is, (a,b) is in 

Close(T) iff (a,b) is in D(T)* and a,b are in Root(T).att. Now, 

there are a 

Root(T).att. 

bounded 

This is 

number of graphs whose nodes are in 

because IRoot(T).attl is bounded. If a 

directed graph can have no more than a bounded number of nodes, 

then there are a bounded number of possible directed graphs. 

Beyond this, there are a bounded number of possible symbols. 

This means that, even though there are an infinite number of pos

sible trees, Close(T) will produce a bounded number of graphs. 

Each such possible graph will have, as nodes, the attributes of 

some symbol. This means that we can represent the possible 

values for Close(T) by the following data structure: 

S:Array[V] of sets of graphs 

That is to say, for each symbol, X, there is a set of graphs, 
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SEX]. Each graph in the set has nodes which are taken from 

X.att. Each call to Close(T) must produce a value which is in 

S[Root(T)]. If we can determine the set of all possible values 

which Close(T) can return, then we can determine if there is a 

circularity in the grammar. 

We can now write the algorithm which determines if there is 

a circularity in the grammar. 

S:Array[V] of sets of graphs; 

Begin 

For X in V Do SEX] := { the null graph }; 

Repeat 

Pick P[I] from P; 

Temp := I}; 

For J:= 1 to IP[I]I - 1 Do 

Temp := Temp union Pick any from S[P[I,J]]; 

Temp := Temp union D(P[I]); 

Temp := Normalclosure(Temp); 

Temp := { (a,b):a,b are in P[I,O].att and (a,b) is in Temp}; 

Add Temp to S[P[I,O]]; 

Until no more graphs can be added to any SEX]; 

End. 

The "Pick" primitive indicates the non-deterministic selec

tion of some item from a set. "Pick x from integers" might be 

used to select an integer, x, nondeterministically. Its use in 
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the algorithm should be self-explanatory. 

This is the algorithm as given by Knuth[1]. Because of the 

use of the non-deterministic "Pick" primitive, it would appear to 

require exponential time. This appearance is completely justi

fied. Jazayeri has shown[5] that the circularity test for attri

bute grammars is of exponential complexity, i.e., that the gen

eral problem of determining whether or not a given attribute 

grammar has a circular definition, for some parse trees, is in

tractable. With hopes for a general and practical solution to 

this problem rudely shattered, the search turns to less general 

methods. The objective is to define a restricted, but natural, 

subclass of the attribute grammars for which a reasonable solu

tion to the circularity problem exists. It is the purpose of 

this section to point out a subclass of the attribute grammars 

for which the complexity of the circularity test is linear in the 

size of the grammar, using a modification of the the test for 

circularity proposed by Knuth[2]. 

The restriction that is proposed is simply to place a bound 

on the complexity of an individual production. This restriction 

seems a plausible one. Most grammars in use today have only a 

few symbols per production. 

We can give the modified circularity test as follows: 

S:Array[V] of sets of graphs; 

Active: Set of V; 

Begin 
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For X in nonterminals Do SEX] := { the null graph }; 

Active := V; 

Comment V is terminals union nonterminals; 

Repeat 

1 Pick X from Active; 

2 Delete X from Active; 

3 For All I such that X is in the right part of P[I] Do 

4 Repeat 

5 Temp:= I}; 

6 For J:= 1 to IP[I]I - 1 Do 

7 Temp:= Temp union (Pick any from S[P[I,J]]); 

8 Temp:= Temp union D(P[I]); 

9 Temp:= Normalclosure(Temp); 

10 Temp := { (a,b):a,b are in P[I,O].att and (a,b) is in Temp}; 

11 If Temp is not in S[P[I,O]] Then 

Begin 

12 Add Temp to S[P[I,O]]; 

13 Add P[I,O] to Active; 

End; 

14 Until no new values can be added to S[P[I,O]]; 

15 Until Active = I}; 

End. 

This algorithm is the same as Knuth's, except that we now 

impose some constraints on the non-deterministic selection 

methods which were used previously. These constraints, along 

with our assumption that each production is of bounded complexi-
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ty, can be used to show that the algorithm given is of linear 

complexity in the size of the grammar. 

To begin with, we observe that steps 4 through 14, i.e., the 

inner Repeat clause, take a bounded amount of time to execute. 

In this repeat clause, we are considering a single production. 

This one production, in conjunction with the sets S[P[I,1]], 

S[P[I,2]], ••• S[P[I,/P[I]/-1]], will be used to add new graphs, 

if possible, to S[P[I,O]]. Statement 14 forces us to keep adding 

new graphs, until we can add no more using only this production. 

That is to say, until no matter what choice is made by the non

deterministic Pick primitive on line 7, the result is always al

ready in S[P[I,O]]. It might not seem obvious that this repeti

tion will require a bounded amount of time, but this can be seen 

more clearly in light of the following observations. First, the 

complexity of a production is bounded. This means that the com

plexity of each member of SeX] must be bounded, also. This im

plies that the size of each set, S[P[I,J]], must be bounded. 

Now, the complexity of each production is bounded, so IP[I]I is 

bounded. Therefore, in steps 4 through 14, we are examining how 

a bounded number of S[P[I,J]], each of which has bounded complex

ity, can interact. While the number of interactions might be 

large, it is bounded. Therefore, steps 4 through 14 require 

bounded time. 

The next question is: How many times are steps 4 through 14 

executed? We observe that statement 3, the For clause, selects a 

single production, then executes statements 4 through 14 for this 
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production. That is, each time we select a production, we exe

cute statements 4 through 14 once. Asking how many times state

ments 4 through 14 are executed is therefore the same as asking 

how many productions are selected by the For statement, statement 

3. We now come to the crux of the matter. A single production 

can be selected by statement 3 at most a bounded number of times. 

To demonstrate this, we observe that a production can only be 

selected if some symbol in its right part is active. A symbol, 

X, can become active at most a bounded number of times, because X 

can only become active if we add a new graph to S[X], and the 

number of possible graphs in S[X] is bounded. This can be clear

ly seen be examining statements 11 through 13. IS[P[I,O]]I is 

bounded. Each time we add a new graph to S[P[I,O]], we mark 

P[I,O] as active. This is the only way, outside of the initiali

zation, that a symbol can be marked as active. Thus, we can mark 

each symbol as active at most a bounded number of times. 

Now, each production can be selected by statement 3 at most 

a bounded number of times, because to select a production, P[I], 

we must have marked some symbol in its right part as active. But 

we can mark each such symbol as active only a bounded number of 

times, and there are a bounded number of symbols in the right 

part. Therefore, each production can be selected by statement 3 

only a bounded number of times. 

Finally, we note that the number of productions is linear in 

the size of the grammar. Therefore, the total execution time of 

this algorithm is linear in the size of the grammar. This is be-
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cause statements 4 through 14 execute in a bounded period of 

time, these statements are executed a bounded number of times per 

production, and the number of productions is linear in the size 

of the grammar. Q.E.D. 

3/22/77 Page No. 30 



EVALUATORS FOR ATTRIBUTE GRAMMARS 

RANKING THE ATTRIBUTES 

In the next section, we shall consider the problem of rank

ing the attributes. This problem is distinct from the problem of 

sorting the attributes, and from the problem of evaluating the 

attributes, once sorted. In the methods of both Jazayeri[4], and 

of Bochmann[3], the problems of ranking, sorting, and evaluation 

have been merged into one. This produces more efficient evalua

tors, but results in less flexibility. The division into three 

distinct phases increases flexibility, to the point where arbi

trary attribute grammars can be handled, but only at the price of 

decreased efficiency. While the methods of Jazayeri and of Boch

mann require a fixed number of passes to deal with the attribute 

grammars which meet the restrictions that they impose, the method 

to be described requires log N passes, to deal with any arbitrary 

attribute grammar. 

Rather than attempt to introduce the ranking algorithm slow

ly, a piece at a time, we shall give the entire algorithm at 

once, and then explain, afterwards, how it works. It is given in 

a Pascal-like language. The notation is similar to that of the 

previous section, with one or two minor exceptions. 

Data structures: 

Tree = Record 

att: set of attributes; 

d: a relation of attributes, i.e., a set of pairs of 
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attributes. It can also be viewed as a directed graph; 

offspring: an array of trees; 

End; 

Attribute = Record 

position,pred:integer; 

End; 

It should be noted that we are considering attributes with 

respect to a parse tree: that is to say, two attributes are dis

tinct if they belong to different nodes in the parse tree, even 

though those two nodes are labeled with the same nonterminal, and 

even though the two nodes are expanded by the same production. 

Initialization of the data structure: 

We shall assume that the input string has already been 

parsed, and that we have available an explicit parse tree. Each 

node of the parse tree is represented by an object of type Tree, 

as given above. We initialize each field of a given node, T, as 

follows: 

3/22/77 

T.att This field remains constant throughout the al-

gorithm. It is the set of attributes associated with 

this node. When T is a terminal, each of the attri

butes must also be initialized. For each attribute, a, 

of such a terminal, a.pred:=l. The value of a.position 

is computed by the algorithm, and is initially unde

fined. 
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This field is initialized to show the dependen-

cies among the attributes associated with this node and 

its direct descendants. Initially, for each subtree T, 

T.d = D(Rootproduction(T», from the notation of the 

previous section. T.d will next contain DTOP(T), along 

with some other stuff. (The other stuff is DTOP(T[I]), 

or DTOP of the offspring of T.) DTOP(T) will be comput

ed during the first pass. T.d will finally be used to 

hold a somewhat different relation, a total ordering on 

T.att, (instead of just the partial ordering, defined 

by DTOP(T». (It should be noted at this point, that 

the construct (T.offspring[1].att union . . . union 

T.offspring[j].att) will appear quite frequently. The 

variable j is a dummy variable, and is used simply to 

indicate the last offspring of the node, T.) 

T.offspring The direct descendants of T, appearing in 

the same order as the corresponding symbols in the 

right part of P. Note that T.offspring[I], in the no

tation of this section, is identical with T[I], in the 

notation of the last section. The change was made to 

bring the syntax into accord with Pascal. 

THE ALGORITHM 

Procedure Pass1(T:Tree); 

Comment: This procedure computes DTOP(T) for every node in the 
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derivation tree, and adds the resulting relation to T.d. (To be 

exact, it computes DTOP(T) union DTOP(T[1]) union DTOP(T[2]) un

ion etc. etc.) 

Begin 

For x in T.offspring and x a nonterminal Do Pass1(x); 

Temp:=T.offspring[1].d union ••• union T.offspring[j].d; 

T.d:= T.d union {(x,y) in Temp such that x,y in {T.att union 

T.offspring[1].att union ••• union T.offspring[j].att}}; 

Normalclose(T.d); 

End; 

Procedure Normalclose(R:relation); 

Comment: This procedure computes the transitive closure of R us

ing normal methods. 

Begin 

While there exists x,y,z such that (x,y),(y,z) in Rand (x,z) 

not in R Do Add(x,z) to R; 

End; 

Procedure Pass2(T:Tree); 

Comment: Pass2 determines the order in which the attributes may 

appear. At the end of pass 2, for all nodes, T, if a,b in T.att, 

then (a,b) in T.d implies a must be evaluated prior to b, i.e., b 

depends on a. Pass 2 also converts the partial ordering imposed 

by the semantic constraints into a total ordering. It does so by 

adding artificial constraints. 
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Begin 

Normalclose (T.d); 

While there exists x,y in {T.att union T.offspring[1].att union 

••• union T.offspring[j].att} such that (x,y) not in T.d and 

(y,x) not in T.d Do 

Begin 

Add«x,y» to T.d; 

Normalclose(T.d); 

End; 

For x in T.offspring and x a nonterminal Do 

Begin 

While there exists y,z in x.att such that (y,z) in T.d and 

(y,z) not in x.d Do Add«y,z» to x.d; 

Pass2(x); 

End; 

End; 

Procedure Pass3(T:Tree); 

Comment: Pass3 computes the lengths of various sequences of at

tributes that must be adjacent in the final ordering. 

Begin 

For x in T.offspring and x a nonterminal Do Pass3(x); 

For a in T.att Do 

Begin 

Temp:= {x in {T.offspring[1].att union union 

T.offspring[j].att} such that (x,a) in T.d and for all b in 

T.att, (b,a) in T.d implies (b,x) in T.d}; 
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Comment: To put it another way, Temp is the set of attri

butes of the offspring of T which precede a in the total ord

ering defined by T.d, but follow all other attributes in 

T.att which precede a; 

a.pred:= (Sum of Temp.pred) + 1; 

Comment: Temp.pred denotes the bag of numbers produced by 

applying the field selector, pred, to each of the elements of 

the set, Temp, in turn; 

End; 

End; 

Procedure Pass4(T:Tree); 

Comment: Pass4 determines an integer, giving the order in the 

ranking, for each attribute. 

Function Predecessor(x:attribute); 

Begin 

Comment: This function selects the predecessor of its argu

ment in the ordering defined by T.d, and the predecessor is 

in T.att, or T.offspring[j].att, for some j; 

If there exists a y such that (y,x) in T.d and for all z, 

(z,x) in T.d implies (z=y) or (z,y) in T.d Then 

predecessor:= y 

Else 

Predecessor := "QUIT"; 

End; 

Function Last; 

Begin 
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Comment: This function selects the attribute in T.att which 

follows all other attributes in T.att in the ordering defined 

by T.d; 

select x such that for all y, y<>x implies (y,x) in T.d; 
• 

Last:=x; 

End; 

Begin 

Comment: The body of Procedure Pass4; 

If T=Root Then For x in T.att Do x.position := Sum of {y in 

T.att such that y=x or (y,x) in T.d}.pred; 

Temp:=Last; 

Repeat 

If Predecessor(Temp) not in T.att Then If Temp in T.att Then 

Predecessor(Temp).position:=Temp.position-1 

Else 

Predecessor(Temp).position:=Temp.position-Temp.pred; 

Temp:=Predecessor(Temp); 

Until Temp="QUIT"; 

For x in T.offspring and x a nonterminal Do Pass4(x); 

End; 
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Begin 

Comment: this is the main procedure; 

Pass1(Root); 

Pass2(Root); 

Pass3(Root); 

Pass4(Root); 

End; 
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Before going into a detailed discussion of the algorithm, 

some global comments are in order. The algorithm is clearly di

vided into 4 separate passes, executed consecutively. Passes 1 

and 3 carry information upwards in the tree,towards the root. 

Passes 2 and 4 carry information downwards in the tree, towards 

the leaves. The first pass carries information about the depen

dency relations of the attributes upwards. The second pass does 

two things: it carries information about the dependency relations 

of the attributes downwards in the tree, and it also imposes ad

ditional constraints on the dependencies, i.e., it adds artifi

cial "semantics", whose sole purpose is to reduce the number of 

acceptable orderings and thus simplify the problem. The con

straints added by the second pass are not, in general, sufficient 

to produce a unique ordering of the attributes, and so, in the 

third pass, this ordering process is completed. The third pass 

begins the job of determining what the final numbering should be. 

It does this by counting the number of attributes in various 

subsequences of the final ordering. By the time pass 4 is exe

cuted, enough information about the ordering has been gathered to 

allow the actual assignment of numbers to each attribute, which 

define their final position in the ranking. 

Pass 1 computes DTOP(T) union DTOP(T[1]) union DTOP(T[2]), 

etc. etc. for each node in the derivation tree. It generates 

the transitive closure of the relation defined by the semantics 

of the production used, and by the relations computed for the 

offspring. 
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Pass 2 finishes the job of determining how two attributes 

associated with the same node are related. That is, DTOP(T) does 

not give the complete set of constraints on the order of the at

tributes in X.att. DTOP(T) provides only that information about 

the ordering which can be deduced from the subtree, T. We must 

also add the additional information which can be gained by exa

mining the rest of the tree. The logic of pass 2 which insures 

that if x is needed by y, then (x,y) will appear in T.d is very 

similar to that used in pass 1, and so will be skipped. 

In addition, Pass 2 imposes further constraints which insure 

that all the attributes associated with a particular production, 

i.e., the attributes of T and the attributes of all the offspring 

of T, are totally ordered. Because we are adding additional con

straints, we might accidentally add one constraint too many, and 

produce an artificially circular definition. Examining the code 

for Pass2 indicates that we add new items to the relation in two 

places. In the first While statement, we cannot possibly get 

into trouble, for we have tested the relation to insure that the 

two elements were previously unordered with respect to each oth

er. Assume, therefore, that when we add the pair (y,z) in the 

second while statement, that we have introduced a circularity in 

x.d. But if we have a circularity in x.d at that point, then we 

must surely have had a circularity in T.d. The circularity in 

x.d can be made to involve only elements of x.att, i.e., the at

tributes associated with the node x. This is because, in any 

possible circular path, the attributes from x.offspring can be 
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removed. If we have the sequence of attributes "a b c" in the 

circularity, and a and c are in x.att, while b is not, then we 

can remove b, giving "a c", and the pair (a,c) will be in x.d. 

This is because x.d was computed by taking the transitive closure 

over the attributes associated with the production which expands 

x. Therefore, the circularity will exist among the attributes in 

x.att, ignoring attributes from lower nodes in the tree. But if 

the circularity involves only elements of x.att, then it must 

have already appeared in T.d, for in pass 1, all elements in x.d 

that involved only attributes in x.att were added to T.d. This 

means that, contrary to our assumption, there was a circularity 

in T.d. Thus, we will not introduce a circularity that is not 

already there. 

The other thing to note about pass 2, is that it defines a 

total ordering on the attributes associated with a particular 

production. That this is so can be seen by examining the first 

While loop. If any two attributes have no relation to each oth

er, they are forced to have a relation to each other. When this 

process terminates, every pair of attributes is related. This 

defines a total ordering. 

By the time pass 2 has finished, we have imposed a total 

ordering on the attributes associated with each production, but 

we have not defined a total ordering on all attributes in the 

derivation tree. We must add an additional constraint to the 

constraints already added in order to obtain a total ordering on 

the attributes. This total ordering will be needed by pass 3. 
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Before proceeding further, we shall define some terminology. 

Pass 2 order: a,b are in pass 2 order iff there exists 

a node, T, such that a,b are in T.att, and (a,b) is 

in T.d. It is understood that the value of T.d re

fered to is the value after the completion of pass 2 

but prior to the start of pass 3. 

Given pass 2 order, we wish to define a total order, which 

specifies completely the order in which all the attributes in the 

derivation tree will appear. We observe that pass 2 order fails 

to be a total order because two attributes in separate subtrees 

need not be related. We note that distinct subtrees must neces

sarily have a common ancestor, and it seems intuitively reason

able to define our additional constraints by forcing a relation

ship between the attributes of a node and the attributes of all 

the ancestors of that node. We can then derive an indirect rela

tionship between any two attributes by tracing back to a common 

ancestor, and using the relation among the ancestor's attributes 

to define the relation between the two attributes in question. 

(In the following, all variables have the values they would have 

after the completion of pass 2.) Accordingly, we define our total 

order as follows: 

The pair, (a,b) is in total order iff one or more of the 

following three conditions is met: 
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1.) (a,b) is in pass 2 order. 

2.) If there exist nodes, T and T', with T' an ances

tor of T, such that a is in T'.att, and b is in 
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T.att, and neither (a,b) nor (b,a) is in (pass 2 

order)*, then (a,b) is in the total order. 

3.) (a,b) is in the total order if it is in the tran

sitive closure of the union of the relations de

fined in 1 and 2. 

This definition means, essentially, that we first see if two 

attributes are in (pass 2 order)*, but if they aren't in (pass 2 

order)*, then we seek out the common ancestor, associate each at

tribute with an attribute of its common ancestor, and use the 

order defined by the order of the ancestors. 

We can view this in another fashion, as follows. Each node, 

T, in the derivation tree, has a subtree descending from it. 

Now, there are many attributes in this subtree. We group these 

attributes into categories. We associate an attribute in the 

subtree with the first attribute of the root which must follow it 

in the final order. Put another way, with each attribute of the 

root of the subtree, we associate those attributes in the subtree 

which must directly proceed it in the final order. Now all we do 

is order the categories in the order defined by the order of the 

attributes of the root. In this way, the ordering of the attri

butes at the root is used to provide an ordering on all the at

tributes in the subtree. If a and b are two attributes in the 

subtree, associated, respectively, with two attributes, c and d, 

of the root of the subtree, then (a,b) is in the final order iff 

(c,d) is in (pass 2 order)*, and (b,a) is in the final order iff 

(d,c) is in (pass 2 order)*. 
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While the total order involves some elaborate definitions, 

we never actually compute the total order, explicitly, in pass 3. 

We must know that such a total order, with the properties 

described, exists, but that is all. The actual code of pass 3 

performs simple operations on integers. In particular, pass 3 

assigns an integer value to a.pred, a value associated with each 

attribute. 

In the third pass, we are counting the number of attributes 

in a sub tree which have been associated with each attribute in 

the root of the subtree. In our imaginations, we may view these 

counts, which are computed in T.pred, (a name which is derived 

from the fact that T.pred counts the immediate predecessors of an 

attribute), as counting the number of attributes which have been 

placed in sequence next to the root attribute. Conceptually, the 

process can be imagined as the concatenation of sequences of at

tributes. It can be viewed as a generalized syntax directed 

translation schemata[6]. (In passing, it should be noted that the 

following algorithm can be extended to give a method of determin

ing the resulting translation for an arbitrary syntax directed 

translation schemata.) 

If there were no constraint on memory, we could sort, (not 

just rank), the attributes in accordance with the final order 

during the third pass by using the following syntax directed 

translation schemata, (read reference [6] before proceeding.) 

The desired translation is a string of attributes, in an 

order which can be evaluated. To define our translation, we as-
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sociate a sequence of the syntax directed translation schemata 

with each attribute. Thus, for a given symbol, X, which has m 

attributes, we would have m sequences for the translation schema

ta. The rules for our translation schemata are simple. All the 

attributes associated with a single production can be divided 

into two groups, the attributes associated with the left part, 

and the attributes associated with symbols in the right part. 

Denote members of the former group by L, and of the latter group 

by R. We have imposed a total ordering on all the attributes as

sociated with a single production. Therefore, we could, if we so 

desired, list the attributes in this order. The resulting list 

might appear as follows: 

L L L R R R L R R L R L R R R R L R L 

Now, as can be clearly seen, adjacent to each attribute from the 

left part is a group of attributes from the right part. We asso

ciate with each L, the concatenation of the sequences associated 

with the adjacent R's. The attribute, L, is concatenated on the 

right of the resulting sequence. That defines, for each produc

tion in the derivation tree, the syntax directed translation 

schemata. (As the reader might note, we have taken a liberty 

with the strict definition of a SOTS. We have given a rule for 

each production in the derivation tree, and so might have dif

ferent rules for two different applications of the same produc

tion. It is assumed that this will not cause confusion.) This 

syntax directed translation schemata will translate an input 

string into a sequence of attributes, and the sequence of attri-
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butes will be in an order which can be evaluated. 

Those satisfied with this explanation can skip to page 49. 

Those desiring a more detailed treatment can continue. 

We will let each attribute associated with each node, be the 

header of a sequence of attributes. Thus, if a node has 5 attri

butes, then it will conceptually have 5 sequences of attributes 

associated with it. Each node of the derivation tree will have 

associated with it several sequences of attributes. Each of 

these sequences will be composed by concatenating sequences asso

ciated with the offspring of the node, and also by concatenating 

the attributes associated with this node in appropriate places. 

The attributes associated with this node will be imagined as be

ing at the extreme right of these sequences, that is, all the at

tributes to the left of a given attribute precede it in the final 

order, and all following attributes succeed it. To determine the 

sequences which should be associated with the attributes of node 

T, given the sequences associated with the attributes of the 

offspring of T, we can use the following algorithm. Order the 

subsequences in the ordering defined by T.d on the corresponding 

attributes. (It should be noted that T.d defines an ordering on 

all attributes associated with Rootproduction(T». The subse

quence to be associated with an element of T.att, call it a, is 

found by concatenating a and the subsequences associated with at

tributes of the offspring of T, which are found to the immediate 

left of a. (Note that there will be no subsequences which are to 

the right of all of the attributes of T in the ordering. If 
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there were, then these attributes would be isolated, and could 

not affect any attributes above themselves. That this is so will 

be seen more easily after the demonstration that this algorithm 

will never place two attributes in reverse order in the final 

ranking.) 

The following property, which will be inductively passed up 

the nodes of the tree, is used to show that two attributes can 

never be out of order. If, at a given node in the tree, T, and 

with a given attribute, a, we were to evaluate those attributes 

in the subtree to the left of a in the ranking, but not including 

those attributes in the subsequence associated with a, then we 

would be able to evaluate the attributes in the subsequence asso

ciated with a, and we would be able to do so in order from left 

to right. This is trivially true for the attributes associated 

with a terminal, for all such attributes are synthetic, and al

ready defined. Assume it is true for all the offspring of T. We 

now desire to show that it is true for T. This is easily shown. 

In forming the subsequences associated with the attributes of T, 

we preserved the ordering of the subsequences of the attributes 

of the offspring of T from which they were formed. Thus, for 

each subsequence which is part of the sequence of attributes 

which is associated with a, we can evaluate the attributes in the 

subsequences, in order, from left to right. Putting these left 

to right evaluations together, in order, we can evaluate the new

ly formed sequence, in order, from left to right. Thus, this 

property will hold for all the nodes in the tree, and in particu-
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lar, for the root. The root, however, contains all the attri

butes in the entire tree, all nicely ordered. If these can be 

evaluated from left to right, then we are surely safe. 

In the third pass, we do not actually perform the concatena

tion operations outlined above. We simply keep track of the 

length of the subsequences that would have been formed, had we 

actually done so. In this way, the fourth and final pass knows 

how many attributes there are in the tree, and how long each 

subsequence is. It is then a simple matter to assign the numbers 

to each attribute which define the ranking. If the total number 

of attributes in the tree is N, then we assign the last attri

bute, available at the root, the number N. The attributes of the 

root which precede T can be numbered simply by subtracting the 

length of the subsequence to their immediate right, from the po

sition of the attribute of the root to their immediate right. 

The positions of the offspring of the new root can be assigned in 

a ,similar fashion, and so on, throughout the entire tree. The 

attributes have been ranked. An example of these operations is 

given in appendix A. 

While the algorithm has been given in a form which assumes 

the entire parse tree is available, it can easily be reformulated 

into 4 separate passes, where the first pass is done in conjunc

tion with the original parse. Each pass requires only a stack as 

deep as the parsing stack, and can leave the rest of the data on 

secondary storage. 
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SPECIALIZING THE RANKING ALGORITHM 

The ranking algorithm, as given, can be made more efficient, 

at the cost of some generality. If we restrict ourselves to the 

class of attribute grammars which Kennedy[7] calls "absolutely 

noncircular", then passes 1 and 2 can be eliminated. This class 

of attribute grammars is the class which Knuth's original, (but 

incorrect) circularity test would decide were noncircular. The 

absolutely non-circular attribute grammars are a proper superset 

of the attribute grammars which can be dealt with by Jazayeri or 

Bochmann. The methods of Jazayeri and Bochmann will, in general, 

prove desirable, (more efficient,) in those cases where they are 

applicable. 

The only function of the first two passes is to decide upon 

a total order which can be associated with the attributes of each 

production. If we could decide upon a total order for each pro

duction in advance, then we would not need to compute the total 

order for each particular input string. We note that the ex

istence of a total order on the attributes of a production, for 

all productions, is equivalent to the existence of a total order 

for the attributes associated with a symbol, for all symbols. 

The test for determining if an attribute grammar is absolutely 

noncircular does not impose a total ordering on the attributes of 

each symbol, but we can add additional artificial "semantics" 

which will accomplish this goal. The statements: "This attribute 

grammar is absolutely noncircular" and "We can impose a fixed to-
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tal ordering on the attributes associated with each production, 

which is consistent with their semantic evaluation" are 

equivalent. Actual computation of a fixed total order for each 

production is not difficult. 
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EVALUATION OF THE ATTRIBUTES 

The result of the ranking algorithm is a ranking of the at

tributes. Once the attributes have been ranked, it is necessary 

to sort them. It is not the purpose of this paper to consider 

methods of sorting a set of ranked items, such techniques are 

well covered elsewhere. We assume, therefore, that the attri

butes have been sorted, by some technique, and are now available 

to us in sorted form. It is now necessary to evaluate them. 

The simplest algorithm of which we can conceive is to evalu

ate them in order, from left to right, holding the evaluated at

tributes in memory until they are used. Needless to say, this 

might prove expensive in terms of primary memory requirements, 

because we might have to hold all the evaluated attributes in 

memory at once. The next approach we might take is to somehow 

organize the attributes so that we can use secondary storage in 

an efficient manner, i.e., to adopt a multi-pass algorithm, as is 

done by Jazayeri and Bochmann. If we insist that the algorithm 

handle an arbitrary attribute grammar, then our options become 

narrower. Rather than give the algorithm directly in terms of 

attributes, we shall give it in more general terms, and then show 

its application to attribute grammars. 
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EVALUATION OF GENERALIZED ADDRESS TRACES 

The first concept that we must develop is that of the gen

eralized address trace. In a normal address trace, a sequence of 

(binary) operations is specified on a set of operands. The 

operands are simply the words of a computer, i.e., for the 6400, 

the operands of an address trace would be 60 bit words. In a 

generalized address trace, we will adopt the convention that ar

guments can be arbitrarily complex objects, but have bounded 

size. We also assume that these named objects can be operated on 

by a fixed set of arbitrary functions, which accept an arbitrary 

number of arguments, instead of the usual binary operators nor

mally found in an address trace. The crucial concepts are that 

we are dealing with an address space, and that within that ad

dress space are named (or addressable) objects. The named objects 

are operated upon by a fixed sequence of operations, whose argu

ments are specified by names (addresses) within the address 

space. An example of such a generalized address trace would be 

the following: 

A=I 

B=PLUS(A,I) 

C=TIMES(A,B) 

D=SQUAREROOT(C) 

E=TIMES(D,C) 

B=TIMES(E,A) 
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C=PLUS(B,E) 

The operations in such an address trace are fixed, as are 

the names of the operands, and the sequence of operation applica

tions. The actual arguments, however, need not be known. 

Given an arbitrary generalized address trace, it is possible 

to evaluate that address trace, i.e., to assign values to the 

variables in accordance with the specified operations. The algo

rithm that will follow will do this in time N log N, with primary 

memory requirements that are small, and with a disk as secondary 

storage device. The time bounds are those involved in shuffling 

the data around, and do not include the time that might be spent 

by the operations themselves. The N is more closely related to 

the total memory requirements of the operands in question. This 

assumes that it is possible to fit the few operands necessary to 

evaluate a single result into primary memory at one time, i.e., 

the individual operands are small, compared with the primary 

memory size. 

We first make the following observations. An operation is 

performed on a (small) set of operands, and produces a result. 

The operands are referenced, and the result is produced. The 

result, and some of the operands, will subsequently be referenced 

again. (We discount the case in which a result is produced, but 

never referenced.) If we number the applications of the opera

tions, in order, from the first, then we can assign a "time" to 

the next reference. Thusly: 
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1 A=PLUS(2,5) 

2 B=TIMES(A,8) 

3 C=SQRT(B) 

4 B=PLUS(C,A) 

Operand A is produced at time 1. It is next referenced at 

time 2. It is then referenced again at time 4. For every refer

ence, it is possible to produce the time of next reference, if 

any. In the worst case, if we simply keep every named object in 

primary memory from the time it is produced until the time it is 

last referenced, we might occupy an amount of memory proportional 

to the length of the input string. Our desire is clear: we wish 

to arrange matters so that the named objects that we desire to 

use for the next operation are in memory, while the objects that 

we are not interested in are out somewhere on disk. How can we 

arrange this? 

The first observation that we make is this: objects are 

referenced by different operations at different times. Ideally, 

we should like to take the objects, sort them by time of refer

ence, and then apply the operations to them. (If an object is 

referenced several times, we can simply make several copies of 

it, and sort each copy in accordance with the time at which it is 

referenced.) Unfortunately, we can't sort the objects until 

they've been generated, and we can't generate them until we've 

got them sorted. What we need is an incremental sort that will 

allow us to do a little sorting, which will bring the operands 

we're interested in to the correct place, then we do a little 
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evaluation, which will let us generate some new objects, then we 

do a little sorting, which will position the newly generated ob

jects, and so forth. It just so happens that there is a sorting 

method which can be made to have exactly this property. 

Consider the following method for sorting the numbers 

between 1 and 1024. First, we create two buckets, B(1,512) and 

B(513,1024). Leaving B(513,1024) alone, we divide B(1,512) into 

two new buckets, B(1,256) and B(257,512). Again, we divide the 

first bucket into two, while leaving the second bucket alone. 

B(1,256) becomes B(1,128) and B(129,256). This process continues, 

until we have the following buckets: 

B(1,2) 

B(3,4) 

B(5,8) 

B(9,16) 

B(17,32) 

B(33,64) 

B(65,128) 

B(129,256) 

B(257,512) 

B(513,1024) 

To sort, all we need do is place incoming items into one of the 

log N buckets. If we should chance to desire the next item in 

the ordering, and if that item has been passed through the sort

ing sequence, then it is available in the first bucket, B(1,2). 

As we remove items from the sorting sequence, the structure of 
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the buckets will have to change. Thus, if we have removed items 

1 through 16, then the buckets will look like this: 

B(17,32) 

B(33,64) 

B(65,128) 

B(129,256) 

B(257,512) 

B(513,1024) 

At this point, it is clear that the bucket structure has broken 

down, and must be reorganized before we can proceed further. We 

do this by taking B(17,32) and breaking it into two buckets. 

B(17,24) and B(25,32). B(17,24) is, in its turn, broken into two 

buckets, B(17,20) and B(21,24). B(17,20) is then broken down 

into B(17,18) and B(19,20). At this point, the process stops. 

Our original bucket structure has been recreated, except that we 

now have no bucket of size 16. That bucket, B(17,32), was broken 

down into a sequence of smaller buckets. 

B(17,18) 

B(19,20) 

B(21,24) 

B(25,32) 

B(33,64) 

B(65,128) 

B(129,256) 

B(257,512) 
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B(513,1024) 

As the process of simultaneous sorting and removal of sorted 

items continues, the bucket structure will change again and 

again. The next items required will always be available at the 

front of the first bucket. Needless to say, in an actual imple

mentation, the first several buckets will be grouped into one 

bucket, held in primary memory. The rest of the buckets will be 

on disk, with only a buffer for each bucket in primary memory. 

What is the running time of this process? We can estimate 

the running time by observing the passage of attributes from 

bucket to bucket. Initially, an attribute will be tossed into 

some (more or less random) bucket. (Actually, there will prob

ably be locality effects. When an attribute is produced, it will 

tend to be placed in one of the next few buckets, because it will 

be referenced quickly. We ignore this for now, and consider only 

the worst case.) At irregular intervals, the bucket an attribute 

is in will be split in two. Eventually, the attribute will be 

used as an argument, and the process will be terminated. It is 

obvious from this description that a single attribute can pass 

through no more than log N buckets. Therefore, the running time 

is order N log N. (N can be either the total number of attri

butes, the total number of nodes in the parse tree, or the total 

length of the input string, because all of these quantities are 

within a constant factor of each other.) 

If there are log(N) buckets, and each bucket has a fixed 

size buffer in main memory, then the main memory requirements are 
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log(N), while it was promised to do the operation in a fixed pri

mary memory. This can be done by grouping the last several buck

ets together. For example, the first 7 buckets might have 

representative buffers in primary memory. The 8th and succeeding 

buckets would be grouped together, and would all share a single 

buffer in primary memory. When the 1st through 7th buckets had 

been exhausted, and we desire the first item from the 8th bucket, 

we simply take all the items we've placed into the overflow buck

et, which holds the items that would have gone into the 8th and 

succeeding buckets, sort them, and then distribute them among the 

8th and succeeding buckets according to the rules previously de

fined. A given item would go into this overflow bucket only once, 

and would be sorted, along with other items in the overflow buck

et, only once. Because the total number of items in the overflow 

bucket is bounded, (because only a bounded number of new attri

butes can be produced by evaluating the bounded number of items 

in buckets 1 through 7,) the sort will require a bounded amount 

of effort. This would add a fixed additional overhead per item. 

The resulting method, while slower, will run in a fixed primary 

memory, as promised. 

The method described has applications beyond attribute gram

mars. In essence, it describes a set of computations which can 

be done in a very small main memory. Any computation which can 

be described by a fixed sequence of operations upon a set of 

operands of bounded size, can be done with a small main memory, 

and in time N log N. (Again, both the time and memory require-
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ments ignore the time and memory requirements of the operations 

themselves. These time and space bounds represent the additional 

overhead for operand shuffling.) Two observations come to mind: 

1.) It looks good. Someone must have thought of it al

ready. 

2.) Just how far is it possible to push this result, 

i.e., what computations actually fall into the class 

described? 

Both of these points deserve further research. 

Some comments can be made at once, however. First, computa

tions involving pointer structures would not fall into this ca

tegory. This is because the names of the operands are not known 

in advance, but are, instead, computed as they are needed. 

Secondly, this would appear to be a new result concerning the 

minimal memory requirements for a given address trace, given com

plete foreknowledge of the addresses involved. This question is 

of some interest in operating systems theory. 

A more detailed description of the algorithm can be found in 

appendix B. 
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APPLYING THE GENERALIZED ADDRESS TRACE 

The application of the method of evaluating a generalized 

address trace to the evaluation of a set of ranked attributes 

should be obvious. What might not be obvious is that, now that 

we can evaluate a generalized address trace, we can make some 

changes to the concept of an attribute grammar which will result 

in simplified evaluation. We give a simple example of such a 

change below. 

Our change consists of 

Hash(table,name,value) , and 

defining two semantic functions, 

Lookup(table,name). These two se-

mantic functions perform the obvious operations on a hash table. 

If we assume that "table" is an attribute, and "name" is a con

stant, (a fixed sequence of characters, for example), then we can 

integrate these semantic functions into our evaluation method 

quite easily. The 2-tuple, (table,name), constitutes an "ad

dress", and can be considered as such in the evaluation of the 

generalized address trace. If this is done, then the actual 

"table" need never exist. Instead, the items in the table are 

tied together by the mechanism which deals with the generalized 

address trace. The advantage of this is simple: We have placed 

a bound on the size of a given attribute. This bound will be 

most felt when dealing with hash tables, which we wish to be of 

unbounded size. If a hash table is implemented as suggested 

above, then there is no bound on its size. 
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TIME INDEPENDENT VARIABLES 

The author would like to take this opportunity to discuss 

why attribute grammars are powerful, and a different method of 

obtaining the same power. The basic reason that attribute gram

mars are as flexible and convenient as they are is just this: 

they free the implementor from the need to collect information 

scattered allover the derivation tree into one place. This col

lection function is taken over by the attribute grammar. Now, a 

top down recursive descent compiler provides a great deal of 

flexibility in language design, but it has one glaring flaw: you 

can't find out what's going to be read in, until you've read it 

in. To call a subroutine which has not yet been defined (a for

ward reference) can cause the compiler to choke. (This fact is 

recognized by Wirth in the design of Pascal. He dealt with this 

problem by the simple expedient of making it illegal.) The usual 

method of getting around this problem is to define a two-pass 

compiler. The first pass collects the forward reference informa

tion that the second pass will need to know about. In an attri

bute grammar, such "forward references" can be dealt with trivi

ally. How else could we deal with this problem? 

If we adopt the viewpoint that we wish to add some extension 

to the normal semantics of a top down recursive descent compiler, 

then our problem can be described thusly: we wish to know, now, 

information that we cannot possibly learn until some time in the 

future. Our solution, given this problem statement, is equally 

simple: we define a new type of variable in which information 
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can be carried from the future to the past. This can be done by 

adding the following semantics: 

1.) There is a special value, "undefined". 

2.) Any variable can be assigned the value, "undefined". 

3.) If a variable is referenced, and the current value of 

the variable is undefined, then the value used will be 

the next value assigned to that variable. 

The problem of forward references can now be dealt with 

easily. If we wish to know, now, about a value which we will 

discover in the future, i.e., after scanning more of the input, 

we proceed in the following fashion: 

wishtoknow := undefined; 

code which uses wishtoknow 

Comment: we finally scan the information we wish to know; 

wishtoknow := scan(input); 

It might be objected that implementation of this concept 

will prove inefficient. If implemented in full generality, this 

is true. If we make a few restrictions, then implementation be

comes easy. We divide all variables into two types, normal vari

ables, and time independent variables. The normal variables can 

be used in any way we desire. The time independent variables, 

however, can not be used to define normal variables, nor can time 
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independent variables be used to change the flow of control of 

the program, nor can time independent variables participate in 

pointer structures. Time independent variables can depend, in 

arbitrarily complex ways, on each other, and on normal variables. 

With these conventions, implementation becomes simple. We exe

cute the program once, with normal variables behaving in the nor

mal fashion. We do not evaluate any of the time independent 

variables. Instead, we build a data structure which shows which 

time independent variables depend on which other time independent 

variables, and what functions have to be applied to evaluate 

them. In this structure, the time independent variables will 

resemble attributes, while the functional dependencies among them 

will resemble the semantic dependencies among attributes. Once 

we have completed the construction of the data structure which 

shows the functional dependencies among the time independent 

variables, we proceed to the evaluation of them. This process is 

akin to the related process for attributes. In fact, the same 

algorithms can be adapted. Attribute grammars and time indepen

dent variables are similiar in terms of their power and complexi

ty. The reader is left to contemplate programs which ignore 

time. 

3/24/77 Page No. 63 



EVALUATORS FOR ATTRIBUTE GRAMMARS 

CONCLUSION 

We have devised an algorithm for the efficient evaluation of 

an arbitrary attribute grammar. The general method for evalua

tion can be specialized, with a resulting increase in efficiency, 

but a corresponding decrease in generality. A significant sub

result was the creation of an algorithm which can efficiently 

evaluate a generalized address trace. The broader applicability 

of this algorithm deserves further research. A usually linear 

test for circularity was given. 
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APPENDIX A 

One picture is worth a thousand words. These pictures (fol

lowing page 66) are for the example taken from Knuth[l]. The ex

ample was also used earlier (page 14). 

The action of the four passes will be exemplified by the 

changes in the dependency graph. Pass1 adds additional arcs to 

the dependency graph. Pass2 adds still more arcs. Pass3 assigns 

a number to attributes in the graph, while Pass4 assigns a rank 

to each attribute in the graph. 

The dependency graph, with the direct semantic dependencies 

illustrated, is shown as "Before Pass1". 

Pass1 makes an upwards sweep of the dependency graph, from 

the leaves to the root. (Trees are oriented upside down.) The 

result is shown in "After Pass1". Notice that all dependency in

formation that can be obtained from a subtree has been summarized 

in the attributes at the root of the subtree. 

Pass2 makes a d.ownward sweep of the dependency graph, and 

imposes a total order on the attributes associated with a produc

tion. Because showing all the newly added arcs would leave an 

illustration bristling with arrows, only the arcs leading from a 

node to its direct successor in the ordering are shown. 

Each attribute in the picture "After Pass Two" is associated 

with two different productions: the production above and the pro

duction below. Therefore, each attribute appears in two dif

ferent orderings. The first is the ordering of all attributes of 
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the production above, in which the particular attribute is in the 

right part. The second is the ordering of all attributes of the 

production below, in which the attribute appears in the left 

part. The numbers in the circles go with the ordering of the 

production above, while the numbers below the circles go with the 

ordering of the attributes in the production below. 

Pass3 makes an upward sweep, and counts the number of at

tributes from each subtree which will directly preceed the attri

butes of the root of the subtree. The numbers shown in "After 

Pass3" are the pred field 6f each attribute. 

Pass4 makes a downward sweep, and computes the rank of each 

attribute. The numbers shown in "After Pass4" are the position 

field of each attribute. The position of the attributes of the 

right part of a production are computed from the known positions 

of the attributes in the left part. 
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APPENDIX B 

In the following section, we give a detailed description of 

the sorting procedure briefly described on page 55 et sequitur. 

The important points of this algorithm are: 

1) items can be inserted randomly. 

2) items are fetched sequentially, in order. 

3) an item can be fetched any time after it has been in-

serted. Both fetching and inserting can proceed at 

the same time. 

q) this sorting algorithm runs in time N log N. 

5) This sorting algorithm can use a small main memory, 

and a disk drive (or log N tape drives) as a secondary 

storage device. 

The algorithm is given in pseudo-Pascal. 

The "Initialize" procedure is responsible for initializing 

data structures. In particular, it empties all buckets, and in

dicates the range of numbers that fall into each bucket. The ith 

bucket contains numbers in the range Lower[i] to Upper[i]. 

The range of the buckets are initialized to: 

1 to 2 

3 to 4 

5 to 8 

9 to 16 
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17 to 32 

etc. etc. etc. 

The procedure, "Fetch", takes the next sequential item from 

the data items that have been put into the bucket structure via 

the "Put" procedure. If the next data item is not in the first 

(smallest) bucket, then an error condition has occurred. If the 

smallest bucket has more than two items in it, then it is split 

in two. The smallest bucket continues to be split in two, until 

it has only one or two items in it. The next sequential data 

item is then taken from the smallest bucket, and returned. 

The procedure, "Put", is called with the data items which 

are to be put into the bucket structure. 

It is assumed that a data item is always put into the bucket 

structure before it is fetched. 

Constant LogN: the log to the base 2 of N, where 

N is the number of data items. 

Type dataitem = record rank:integer ; value:any end 

Var current:integer; 

next:integerj 

Lower: array[l •• LogN] of integer; 

Upper: array[l •• LogN] of integer; 

Bucket: array[l •• LogN] of bag of dataitem 

Procedure Initialize; 

Begin 
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current:=1; 

next:=l; 

For 1:= 1 to LogH Do 

Begin 

Lower[I]:=2 A (I-1)+1; 

Upper[I]:=2 A I; 

Bucket[I]:= I}; 

Eno; 

End; 

Procedure Fetch; 

Comment given the global integer variable, 

next, which specifies the rank 

Begin 

of the item which it is desired to fetch, this 

procedure will fetch it. The variable "next" 

is incremented by 1 which means that 

data items will be fetched in sequence, i.e., 

"next" will take on the values 1,2,3,4, ••• in that 

order; 

If next ) N Then 

Print "error not enough data items." 

Else Back:Begin 

If next < Upper[current] Then 

Begin 

Comment next is in the current bucket. Just 
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return it and have done; 

next:= next+l; 

Return(Bucket[current][next-l]) 

End; 

Comment next is not in the current bucket, so start 

splitting big buckets into little buckets; 

current:= current+l; 

While Upper[current]-Lower[current] > 2 Do 

Begin 

Comment split the current bucket into two new 

buckets, both of half the size. The 

new buckets will be current, and current-l; 

Lower[current-l]:=Lower[current]; 

bucketsize:=Upper[current]-Lower[current]+l; 

Upper[current-l]:=Lower[current-l]+bucketsize/2-1; 

Bucket[current-l]:={}; 

Lower[current]:=Upper[current-l]+l; 

For y in Bucket[current] Do 

If Lower[current-l] <= y.rank <= Upper[current-l] Do 

Begin 

remove y from Bucket[current]; 

Add y to Bucket[current-l]; 

End-
-3> ' 

~; 
"-~urrent := current-1~ 

Comment now that we have a little bucket, go 
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back and fetch the requested data item; 

Goto Back; 

End; 

Procedure Put(x:dataitem); 

Comment this procedure takes a data item and puts 

it into the proper bucket; 

Begin 

For I:= current to LogN Do 

If Lower[I] <= x.rank <= Upper[I] 

Then 

Add x to Bucket[I]; 

End; 
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