
EVALUATORS FOR ATTRIBUTE GRAMMARS

by Ralph Charles Merkle

EVALUATORS FOR ATTRIBUTE GRAMMARS

TABLE OF CONTENTS

Instructions to the Reader ••••••••••••••••••••••••••• 2

Abstract ••• 3

Introduction ••• 4

An Example •• 14

Definitions ••• 17

Circularity ••• 22

Ranking the Attributes •••••••••••••••••••••••••••••• 31

Specializing the Ranking Algorithm 49

Evaluation of the Attributes •••••••••••••••••••••••• 51

Evaluation of Generalized Address Traces •••••••••••• 52

Applying the Generalized Address Trace •••••••••••••• 60

Time Independent Variables •••••••••••••••••••••••••• 61

Conclusion •• 64

Appendix A •• 65

Appendix B •• 67

Bibliography •• 72

10/20/77 Page No. 1

EVALUATORS FOR ATTRIBUTE GRAMMARS

INSTRUCTIONS TO THE READER

The reader who is unacquainted with

advised to read the paper slowly.

feasible •••) He might also wish to read

attribute grammars is

(No other method will be

Knuth[1], which intro-

duces most of the concepts in more detail. The reader who knows

what an attribute grammar is, but is somewhat shaky on the topic,

is advised to skim the introduction to refresh his memory.

Researchers in the field are advised to read the abstract, ignore

most of the introduction, but read the last two pages of that

section, (starting on page 12), pay close attention to the defin

itions, and then skim the rest of the paper, paying particular

attention to the algorithms, and reading the text where the algo

rithms are opaque. The main results of the thesis consist of

three algorithms:

1.) a circularity test which is usually linear.

2.) An algorithm to rank the attributes in time N log N, in

primary memory bounded by the depth of the parsing stack,

and using a tape as secondary storage.

3.) An algorithm to evaluate the attributes, which adds N log

N time, adds small primary memory, and uses a disk as a

secondary storage device. A bound on the size of an at

tribute is assumed. (It has to fit in primary memory •••)

Both 2 and 3 assume an arbitrary attribute grammar.

3/22/77 Page No. 2

EVALUATORS FOR ATTRIBUTE GRAMMARS

Ralph C. Merkle

ABSTRACT

It is possible to evaluate an arbitrary attribute grammar in

an amount of primary memory bounded by the depth of the parsing

stack, and with a disk as a secondary storage device. This

evaluation will require time N log N. (This is exclusive of the

memory and time requirements of the semantic functions.) The

method appears to offer value as a research tool: it allows the

rapid production of compilers for arbitrary attribute grammars

that are not inefficient. It does not appear to be efficient

enough for practical applications. In this, it is marginal. For

some applications, it might prove tolerable.

The method used to evaluate the attributes with a small pri-

mary memory appears

attribute grammars.

to have applications outside of its use in

In particular, the algorithm obtained will

evaluate an arbitrary address trace with a small primary memory.

This result appears to be novel.

In addition, it is shown that the circularity test for at-

tribute grammars, while in

can, in almost all cases of

time.

general of exponential complexity,

interest, be performed in linear

3/22/77 Page No. 3

EVALUATORS FOR ATTRIBUTE GRAMMARS

INTRODUCTION .

Context Free Grammars, (CFG's), have proven extremely use

ful, and have gained widespread acceptance for the definition of

the syntax of programming languages. The presentation of a new

language would seem incomplete without an appendix giving its

syntax, typically in BNF. A universally accepted, well defined,

and easily comprehensible method for describing syntax has been

achieved, and much theoretical work has used this solid basis as

a starting point for the automatic construction of parsers, used

in syntax driven compilers. This happy state of affairs does not

exist with respect to the semantics of programming languages.

Many methods of defining the semantics of a language have been

proposed, but for various reasons, none of them appears to have

dominated the others, nor have any of them gone terribly far in

replacing English as a semantic meta-language. Naturally, every

one has rushed to fill this gap, in the hopes that their pet se

mantic meta-language would suffer the happy fate of CFG's, aiding

humanity and insuring the author's fame and fortune. Knuth

Joined this group of would be saviors with a paper in which he

proposed the use of attribute grammars, (which he also defined).

The author, after reading Knuth's paper, became enamored of at

tribute grammars and decided that here was the ideal semantic

meta-language.

An attribute grammar is a method of attaching a "meaning" to

10/22/77 Page No. ~

EVALUATORS FOR ATTRIBUTE GRAMMARS

a given phrase in a language. The concept of an attribute gram

mar is an extension to the concept of a context free grammar. A

phrase in a context free language has an associated parse tree.

The attribute grammar works directly with the parse tree. It at-

taches "attributes" to each of the symbols in the parse tree:

these attributes are defined to be the meaning of the associated

symbol. The following grammar for expressions can serve as an

example.

E · . - E + P · . -
E · . - p · . -
p · . - identifier · . -
p · . - (E) · . -

A sample sentence in this language might be: A+B+(C+D). The at-

tributes that we might wish to associate with E and P might be

the type of the expression, and the code needed to evaluate the

expression. Every occurrence of E in the parse tree would have

two attributes: type and code. The type might have two values,

integer or real, while the code might be a sequence of machine

language instructions. In this simple example, P would have the

same two attributes. Every occurrence of P would have associated

attributes defining the type and the code required to evaluate

it. (In general, this need not be the case. Different symbols

can have different attributes.)

The attributes for a given node in the parse tree are de-

fined in terms of the attributes of the offspring of that node,

and also in terms of the attributes of the parent of that node.

3/22/77 Page No. 5

EVALUATORS FOR ATTRIBUTE GRAMMARS

Arbitrary semantic functions are allowed to define each attri

bute. Given the production:

E ::= E + P

we might have a semantic function, rtype, which determines the

resultant type of the left hand E, given the types of the right

hand E and the P. We might say:

E.type . -. - rtype(E.type,P.type)

(The double use of "E" renders this ambiguous, but we assume the

reader can understand what is meant. More precise definitions

and usage will be considered later.) Notice that this semantic

function is tied to a particular production. In general, each

production will have an associated set of definitions which will

allow the computation of various attributes of the symbols in the

production. Also note that, in general, we might define attri-

butes of symbols in the right part in terms of attributes of sym-

boIs in the left part, even though this has not been done in this

example.

The principal advantage of attribute grammars is the ease

with which concepts can be described, and the close link between

the semantic definitions, and the actual grammar. Because an at-

tribute grammar includes, as an integral component, a CFG, the

semantics of the language are tied quite closely to the syntax,

and no room is allowed for ambiguity about the meaning of a par-

ticular syntactic construct to creep in. (Semantic definition

languages which do not include a grammar as an integral component

can result in rigorous semantics, but no clear connection between

3/22/77 Page No. 6

EVALUATORS FOR ATTRIBUTE GRAMMARS

the rigorous semantics and the actual language.) Attribute gram

mars are also quite flexible, allowing the use of arbitrary se

mantic functions. The semantics of any language, as long as the

semantics are effectively computable, can be cast into the form

of an attribute grammar.

The power of attribute grammars has proven a mixed blessing.

On the one hand, it is easy to write an attribute grammar for a

language, but on the other hand, there is no guarantee that it

will be possible to find an efficient implementation of the at

tribute grammar. Converting an attribute grammar into a working

compiler is a non-trivial feat. While the concept of an attri

bute grammar has gradually been gaining acceptance, the nasty

problems of implementation have kept them from practical use, and

forced them into the role of an interesting semantic definition

language, i.e., an academic toy. Many people have recognized

this problem, and some have been sufficiently brave to leap into

the fray. The objective is to produce a practical compiler

compiler, based on attribute grammars. The author has attacked

this problem, and it is the major purpose of this thesis to ac

quaint the reader with the results.

3/24/11 Page No. 1

EVALUATORS FOR ATTRIBUTE GRAMMARS

Knuth's original paper[l] recognized two main problems which

attribute grammars give rise to. First, given an attribute gram

mar, how do you evaluate the attributes? This requires that the

attributes be evaluated in some particular order, subJect to the

constraint that all the attributes which serve as arguments to a

semantic function must be defined before that semantic function

is invoked. This problem is not as trivial as it sounds, be

cause, in general, any attribute in the parse tree can be defined

in terms of any other attribute in the parse tree. Untangling

this plate of spaghetti can be involved. The other problem that

Knuth defined was the circularity problem. The question is Just

this: Given an attribute grammar, is it impossible to produce a

parse tree in which the attributes are defined in terms of each

other in a circular fashion? That is, is it possible to evaluate

all the attributes for an arbitrary parse tree?

Knuth proposed solutions to both of these problems, but did

not concern himself with computational efficiency. His proposed

solution to the circularity problem is, in the worst case, of ex

ponential complexity. Worse, the circularity problem is of int

rinsically exponential complexity. The work of Jazayeri[q,S]

shows that any algorithm to solve the circularity problem must

be, in the worst case, of exponential complexity. In this thesis

we remove much of the sting from this result by proposing an al

gorithm which is linear in most cases of interest, showing that

the exponential cases are essentially pathological.

Knuth's proposed solution to the problem of evaluation of

10/20/77 Page No. 8

EVALUATORS FOR ATTRIBUTE GRAMMARS

all of the attributes of a parse tree is quite simple. Put the

entire parse tree in memory. The semantic functions impose a

partial ordering on the attributes, the order in which it is pos

sible to evaluate the attributes. Using an algorithm proposed by

Knuth[2], convert this partial order into a total order, (in

linear time, but also linear space, i.e., all the attributes have

to be in main memory at once.) Given a total order which satis

fies the constraints of the partial order, evaluate each of the

attributes, in accordance with the total order. During the pro

cess of evaluation, any attribute which has been defined must be

kept in main memory, for it could be used, at any time, in defin

ing another attribute. The method, while quite efficient in

terms of speed, and also completely general, in that it works for

all attribute grammars, uses a great deal of memory. This shar

ply reduces its widespread applicability. It would be highly

desirable to devise algorithms which were efficient, but which

used much less memory. Such algorithms need not handle all at

tribute grammars. If such algorithms handled a significant sub

set of the attribute grammars efficiently, then this would be

sufficient for many purposes. Ideally, an efficient algorithm,

which used little memory and executed quickly, and which would

handle all attribute grammars, would be desirable.

Previous work has tended to focus on either efficient

methods of dealing with a subclass of the attribute grammars, or

inefficient methods of dealing with all possible attribute gram

mars. Fang[8] proposed a method in the latter category. The

3/24/77 Page No. 9

EVALUATORS FOR ATTRIBUTE GRAMMARS

work of Fang was never intended to be efficient, in terms of ei

ther space or time, but was intended to provide a highly flexible

research tool. It is, in fact, more flexible than the concept of

an attribute grammar given by Knuth. This is because circular

definitions can sometimes be resolved, if the functions involved

do not use the information in a circular fashion. To give an ex

ample:

A=AND(FALSE,B)

B=OR(FALSE,A)

In this sequence of definitions, A and B are defined in terms of

each other. In spite of this, it is clear that A=FALSE, and that

the value of B is not, in fact, needed in the evaluation of A.

Fang's system would allow this. (provided that the AND function

checked its left argument first, and if it proved to be false,

ignored its right argument.)

In the methods proposed by Bochmann[3] and Jazayeri[4], on

the other hand, the objective has been to define a subclass of

the attribute grammars for which it is possible to produce effi

cient evaluators. In this, they have succeeded. The method of

Jazayeri is probably superior, because of its greater power, and

comparable efficiency. If the left to right bias is built into

the hardware, as it appears to be on some machines, then

Bochmann's method is superior. (Jazayeri's method allows right

to left passes.) It should be pointed out that the method

described by Bochmann in [3] is not, strictly speaking, left to

3/24/77 Page No. 10

EVALUATORS FOR ATTRIBUTE GRAMMARS

right. He appears to have made a mistake, and included too many

attribute grammars in the class which he claims he can handle

with a fixed number of left to right passes. For the first pass

of his algorithm, all is well. On subsequent passes, however, it

might be that an attribute, evaluated on a previous pass, and

thus supposedly available, is in the wrong position, and thus not

available without additional computation. This additional compu

tation would involve exactly the concepts that Jazayeri used in

his alternating semantic evaluator. To put it another way, Boch

mann is traversing a tree. Some attributes he evaluates upon

first reaching a node, other attributes he evaluates upon leaving

the node. These latter attributes will appear in their correct

end-order position, not in the pre-order position that is desir

able. Because some attributes from the previous pass appear in

end-order positions, they cannot be used to evaluate attributes

that appear in pre-order in the current pass. Oops.

The original objective of the current work was to design al

gorithms which would allow the efficient evaluation of an arbi

trary attribute grammar in a small, fixed, primary memory with

one tape drive as a secondary storage device, and in linear time.

It has proven necessary to relax these criteria somewhat. In

particular, the problem has been divided into phases, and the

following results have been obtained.

PHASE 1.) Ranking of the attributes. It has proven possible

to rank the attributes in 4 passes for an arbitrary at

tribute grammar, using an amount of primary memory pro-

3/22/77 Page No. 11

EVALUATORS FOR ATTRIBUTE GRAMMARS

portional to the depth of the parsing stack. These

passes are alternating left to right, right to left.

PHASE 2.) Sorting the attributes, once they are ranked.

Many well known algorithms are available to deal with

this problem, typically running in time N log N. It

should be noted that the sorting problem, given a rank

ing, can be done in fewer passes than a general purpose

sort.

PHASE 3.) Evaluating the attributes, once they have been

sorted. It has proven possible to evaluate the attri

butes in time N log N, in a fixed primary memory, with

a disk as a secondary storage device. This is subject

to the restriction that it is possible to fit the at

tributes into primary memory for the actual evaluation

of each one. That is to say, if a semantic function

operates on 4 attributes, and produces a 5th, then it

is necessary that all 5 of these attributes fit into

the primary memory. This puts a bound on the size of a

given attribute. This result is also subject to the

restriction that it does not include the time spent in

the semantic functions, nor the space that they use.

If the semantic functions take forever to execute, then

this method will not take time N log N, but will, in

stead, add time N log N to the execution time of the

semantic functions. If the semantic functions need huge

3/22/77 Page No. 12

3/22111

EVALUATORS FOR ATTRIBUTE GRAMMARS

gobs of memory, then the additional memory requirements

are fixed, but the total core requirements might be ar

bitrarily large. In essence, this algorithm uses the

disk drive to simulate log N sequential storage dev

ices, (tape drives.) Thus, if an installation is wil

ling to devote 10 or 20 tape drives to the task, it is

possible to evaluate gargantuan programs. It is not

clear that this will occur in practice. It is possible

to improve the efficiency of this algorithm if we give

it a primary memory of size log N. (It should be men

tioned that the "fixed" primary memory mentioned before

neglects the log N factor that appears because it re

quires log N bits to represent a number of size N. It

should also be mentioned that the N for this phase is

more closely related to the total size of the evaluated

attributes than it is to the size of the input string.)

Page No. 13

EVALUATORS FOR ATTRIBUTE GRAMMARS

AN EXAMPLE

In the following section, we give a detailed example of an

attribute grammar. The discussion has been adapted from

Knuth[1].

Suppose we are given the following grammar for binary

numbers:

B · . - 0 · . -
B : : = 1

L · . - B · . -
L · . - L B · . -
N · . - L · . -
N · . - L L · . -

(The symbols 0,1, and. are the terminals; the nonterminals are

B, L, and N standing respectively for bit, list of bits, and

number.) This grammar says in effect that a binary number is a

sequence of one or more O's and 1's, optionally followed by a ra-

dix point and another sequence of one or more D's and 1's.

We can define the following attributes for each symbol:

Each B has a "value" B.v which is a rational number.

Each B has a "scale" B.s which is an integer.

Each L has a "value" L.v which is a rational number.

Each L has a "length" L.I which is an in teger •

Each L has a "scale" L.s which is an in teger.

Each N has a "value" N.v which is a rational number.

3/22/77 Page No. 14

EVALUATORS FOR ATTRIBUTE GRAMMARS

These attributes can be defined as follows:

SYNTAX SEMANTICS

B · . -· . - B.v · - 0 · -o

B · . -· . - 1 B.v := 2 A B.s

L · . -· . - L.v .- B.v, B.s · - L.s, · - · -B

L.I .- 1 . -
B L 1. v · - L2. v + B.v, B.s .- L 1 • s , · - . -L1 · . -· . - L2

L2.s · - L 1 • s+ 1 , L 1 .1 := L2.l + 1 · -
N.v .- L.v, L.s . - 0 .- . -N : : = L

L2 N.v · - L 1 • v + L2. v, · -N · . -· . - L1

L 1. s · - 0, L2.s · - -L2.1 · - · -
In the semantic rules shown above, the attribute on the left

hand side of the assignment statement is defined by the expres

sion on the right hand side of the assignment statement. The

reader should note that some attributes of symbols in the right

part are defined in terms of other attributes in the production,

including attributes of the left part, while some attributes of

the left part are defined in terms of attributes in the right

part. This provides a two way flow of information in the parse

tree. We are using both synthesized attributes, i.e., attributes

in which the flow of information is towards the root of the parse

tree, and inherited attributes, or attributes in which the flow

of information is towards the leaves of the tree. The attributes

B.v, L.v, L.I, and N.v are synthesized, i.e., are involved in the

upwards flow of information, while B.s and L.s are inherited, and

3/22/77 Page No. 15

EVALUATORS FOR ATTRIBUTE GRAMMARS

bring information down towards the leaves. (The parse "tree" is

thought of as being upside down, with its root in the air, and

its leaves on the ground.) The evaluation of all the attributes

in this grammar would involve going up and down the parse tree.

How does this grammar work? For a given binary number,

100101.1010001, how would this grammar produce the "meaning"?

The "meaning" of this string of O's and 1's is the value attri

bute associated with the distinguished symbol, N. That is, N.v

is defined to be the meaning of the string. In essence, the

grammar associates a scale factor with each binary digit in the

string, and multiplies this scale factor by the value of the di

git. Each digit then contributes the proper amount to the value

of the entire string, which is obtained by summing the value con

tributed by each digit. The scale associated with a digit cannot

be determined by examing the digit alone. The scale associated

with a given digit can only be determined by examining the con

text around the digit, i.e., by counting from the radix point.

It this feature of collecting information from all parts of the

string, and using it to aid in the definition of local com

ponents, which gives attribute grammars their power. The meaning

of a sub-tree is context dependent. An illustration of this is

given in the diagram, which is from Knuth[1]. The reader who has

had difficulty in following the discussion is advised to stare at

the diagram, and trace through the application of the various se

mantic functions, along with the flow of information in the parse

tree.

3/22/77 Page No. 16

N

/1"'-L . L

/" /"
L B f B
/" I 1 L BIB

/" I I 1 1 0 0

1·

/N(V= y.25)~ .

Uv 1m IS. 1== 4. s = 0) .. L(v == .25. 1== 2, s = -2)
l ,- I ~

L(v== 12. I c: S, s == Ij B(v::: 1, s == 0) U,v::: 0, 1== I, s == -I) B(v =,
/ " ~ \ .25,s=-2)

t<v-12,''''2,~2)B(V'''O,'~) I B(vrO,,=-I) I

L(Vj 8, I-I, $- SJ B(vj4, $ - 2) 0 0

B(v i 8. s la: 5) I

1

The d1asrams are from Knuth[1]

EVALUATORS FOR ATTRIBUTE GRAMMARS

DEFINITIONS

We now give the formal definitions which will be used in the

rest of the paper.

To begin with, an attribute grammar utilizes a CFG as an in

tegral component. We therefore start by defining a grammar. A

grammar is a 4-tuple, G = {V,N,S,P}. V is a finite vocabulary of

terminal and non-terminal symbols. N, a subset of V, is the set

of nonterrninal symbols. S is the distinguished symbol. P is the

set of productions. In the following discussion, P[i] will

denote the ith production, P[i,j] will denote the jth symbol in

the ith production, and P[i,O] will denote the left part of the

ith production. We shall denote the rank of a set by Iset/. IGI

is 4, l{a,b,c}1 is 3, IPI is the number of productions, IP[i]1 is

the number of symbols in the ith production. (note that IP[i]1 =
1 if the right part is empty.) This gives the following defini

tions.

3/22/77

V

N

S

P

P[i]

P[i,j]

P[i,O]

the set of terminals and nonterminals.

The set of nonterminals.

The distinguished symbol.

The set of productions.

The ith production.

The jth symbol in the ith production

The leftpart of the ith production.

Page No. 17

EVALUATORS FOR ATTRIBUTE GRAMMARS

ISetl The rank of the Set.

IPI The number of productions.

IP[i]1 The number of symbols in the ith production.

To take the 4th production of our sample grammar as an example,

P[4] = L

P[4,O] = L

P[4,1] = L

P[4,2] = B

IP[4]1 = 3

.. -.. - L B

We associate with each symbol X in V a finite set of synthesized

attributes, S(X), and a finite set of inherited attributes, I(X).

We require that I(S)={}, that is, the distinguished symbol has no

inherited attributes, and likewise, for each terminal T, S(T)={},

that is, no terminal has any synthesized attributes.

S(X) The synthesized attributes of X.

I(X) The inherited attributes of X.

The semantic functions for each production must allow us to

define all the synthesized attributes of the left part, and all

the inherited attributes of the right part. We assume that all

inherited attributes of the left part were defined in the produc-

tion "above" this one, i.e., nearer the root, while the syn-

thesized attributes of the right part have been defined in the

production below this one. The semantic functions can take any

attributes in the production as arguments. Each synthesized at-

tribute of the left part, and each inherited attribute in the

3/22/77 Page No. 18

EVALUATORS FOR ATTRIBUTE GRAMMARS

right part, must appear on the left hand side of an assignment

statement exactly once. If it does not appear, the corresponding

attribute is undefined. If it appears more than once, the attri

bute is overdefined.

We also need to define clearly notation for the set of at

tributes associated with each nonterminal, each production, and

with each possible parse tree.

X.att

T.att

For X in V, this is the set of attributes associ

ated with X.

This is defined to be the same as Root(T).att.

T.att is simply a notational convenience.

P[i].att The set of attributes associated with the

ith production. (We might wish to refer to

P[i].att as a multiset, or bag. If a symbol oc

curs twice in the rightpart, the corresponding

attributes will occur twice in P[i].att.)

Let T be any derivation tree obtainable in the grammar, hav

ing only terminal symbols as labels of its terminal nodes, but

allowed to have any symbol of V, (not only the start symbol, S)

as the label of the root.

We also will wish to refer to sub-trees of a parse tree, and

we will do so by simple indexing: T[1] is the first (leftmost)

3/24/77 Page No. 19

EVALUATORS FOR ATTRIBUTE GRAMMARS

subtree, T[2] is the second subtree, and so forth and so on. If

we wish to refer to the symbol which is at the root of a parse

tree, we will just say Root(T).

T[i] The ith subtree of T.

Root(T) The symbol which is at the root of T.

Rootproduction(T)

root of T.

The production which is at the

In the course of the paper we shall also be needing various

dependency graphs. A dependency graph is a graph whose nodes are

attributes, and whose arcs indicate the semantic dependencies

among those attributes. Several different kinds of dependency

graphs will be defined and used. In general, we shall use D(arg)

to indicate some form of dependency graph. The type of "arg"

will indicate the type of dependency graph.

D(production) A dependency graph whose nodes are taken

from production.att, and whose arcs represent the

direct semantic dependencies in the production.

D(T) A dependency graph whose nodes are taken from the

derivation tree, T, and whose arcs represent the

direct semantic dependencies among the attributes

in T.

DTOP(T) A dependency graph whose nodes are taken from

Root(T).att, but whose arcs represent the in

direct semantic dependencies in T. (a,b) is in

DTOP(T) iff a,b are in Root(T).att and (a,b) is

3/24/77 Page No. 20

3/22/77

EVALUATORS FOR ATTRIBUTE GRAMMARS

in D(T)*, (where * represents the transitive clo

sure operation.) That is, there must be a direct

ed path from a to b in D(T). If T is a terminal,

then DTOP(T)={}.

Page No. 21

EVALUATORS FOR ATTRIBUTE GRAMMARS

CIRCULARITY

We shall first briefly review Knuth's circularity test, and

then give a modified version that is linear for the class of

grammars under consideration.

Knuth makes the observation that the circularity problem for

attribute grammars is equivalent to the problem of determining if

there exist oriented cycles in any DTOP(T). That is, an attri

bute grammar is circular iff there exists an attribute, a, and a

derivation tree, T, such that (a,a) is in DTOP(T). This is

equivalent to saying a grammar has a circularity iff there is a

directed cycle in D(T), for some T, or to saying that there is

some derivation tree, T, and some attribute, a, such that (a,a)

is in D(T)*.

To determine the dependency graph, DTOP(T), associated with

a parse tree, T, would seem to require that we compute the tran

sitive closure of D(T). (Recall that DTOP(T) is defined in terms

of D(T)*). Because of the particular nature of attribute gram

mars, however, it is possible to simplify this computation. We

observe that we can compute D(T) knowing only

D(Rootproduction(T» and the dependency graphs derived from the

sub-trees, DTOP(T[1]), DTOP(T[2]), etc. etc. That is, all we

need know is the dependencies of the production at the root of T,

and the transitive closure of the dependencies of the sub-trees.

Just as we can factor the problem at the root into a problem in

volving the separate subtrees, and limited interaction among the

3/22/11 Page No. 22

EVALUATORS FOR ATTRIBUTE GRAMMARS

T[i], so we can apply the same concept recursively to each sub

tree in turn. That is, we can factor the algorithm for computing

DTOP(T) into an algorithm which computes DTOP(T[i]) for each of

the sub-trees, and then uses that information to compute DTOP(T)

for the whole tree. To be a trifle more precise, we can write a

recursive routine, CLOSE(T), which will compute DTOP(T) • We can

write the code for Close(T) as follows:

Function Close(T);

Begin

Temp := I};

For I := 1 to IRootproduction(T)1 - 1 Do

Temp := Temp union Close(T[I]);

Temp := Temp union D(Rootproduction(T»;

Temp := Normalclosure(Temp);

Return({(a,b): a,b are in Root(T).att and (a,b) is in Temp});

End.

(The function, Normalclosure, computes the transitive closure of

a relation (which can also be viewed as a directed graph) using

normal methods, e.g., Warshall's algorithm.) The algorithm uses

the "union" operator to refer to the union of two directed

graphs. The union of two graphs is just the graph consisting of

the union of the set of nodes, and the union of the set of arcs.

It should be noted that all graphs in the algorithm are sub

graphs of D(T). This implies in particular that the statement

Temp := Temp union D(Rootproduction(T»;

3/22/77 Page No. 23

EVALUATORS FOR ATTRIBUTE GRAMMARS

"pastes together", in Knuth's terms, the different sub-graphs in

Temp.

This algorithm will determine only if a particular deriva

tion tree has a circularity. It will not determine if a deriva

tion tree with a circularity exists. An analysis of this algo

rithm, however, leads one to the test for circularity for an at

tribute grammar. The key observation is that the number of pos

sible values that Close(T) can take on is finite. Because of

this finiteness, the algorithm can be analyzed by exhaustive

search. We can determine what the algorithm will do in all pos

sible cases, because the number of cases, though large, is bound

ed.

We observe that Close(T) = DTOP(T), that is, (a,b) is in

Close(T) iff (a,b) is in D(T)* and a,b are in Root(T).att. Now,

there are a

Root(T).att.

bounded

This is

number of graphs whose nodes are in

because IRoot(T).attl is bounded. If a

directed graph can have no more than a bounded number of nodes,

then there are a bounded number of possible directed graphs.

Beyond this, there are a bounded number of possible symbols.

This means that, even though there are an infinite number of pos

sible trees, Close(T) will produce a bounded number of graphs.

Each such possible graph will have, as nodes, the attributes of

some symbol. This means that we can represent the possible

values for Close(T) by the following data structure:

S:Array[V] of sets of graphs

That is to say, for each symbol, X, there is a set of graphs,

3/22/77 Page No. 24

EVALUATORS FOR ATTRIBUTE GRAMMARS

SEX]. Each graph in the set has nodes which are taken from

X.att. Each call to Close(T) must produce a value which is in

S[Root(T)]. If we can determine the set of all possible values

which Close(T) can return, then we can determine if there is a

circularity in the grammar.

We can now write the algorithm which determines if there is

a circularity in the grammar.

S:Array[V] of sets of graphs;

Begin

For X in V Do SEX] := { the null graph };

Repeat

Pick P[I] from P;

Temp := I};

For J:= 1 to IP[I]I - 1 Do

Temp := Temp union Pick any from S[P[I,J]];

Temp := Temp union D(P[I]);

Temp := Normalclosure(Temp);

Temp := { (a,b):a,b are in P[I,O].att and (a,b) is in Temp};

Add Temp to S[P[I,O]];

Until no more graphs can be added to any SEX];

End.

The "Pick" primitive indicates the non-deterministic selec

tion of some item from a set. "Pick x from integers" might be

used to select an integer, x, nondeterministically. Its use in

3/22/77 Page No. 25

EVALUATORS FOR ATTRIBUTE GRAMMARS

the algorithm should be self-explanatory.

This is the algorithm as given by Knuth[1]. Because of the

use of the non-deterministic "Pick" primitive, it would appear to

require exponential time. This appearance is completely justi

fied. Jazayeri has shown[5] that the circularity test for attri

bute grammars is of exponential complexity, i.e., that the gen

eral problem of determining whether or not a given attribute

grammar has a circular definition, for some parse trees, is in

tractable. With hopes for a general and practical solution to

this problem rudely shattered, the search turns to less general

methods. The objective is to define a restricted, but natural,

subclass of the attribute grammars for which a reasonable solu

tion to the circularity problem exists. It is the purpose of

this section to point out a subclass of the attribute grammars

for which the complexity of the circularity test is linear in the

size of the grammar, using a modification of the the test for

circularity proposed by Knuth[2].

The restriction that is proposed is simply to place a bound

on the complexity of an individual production. This restriction

seems a plausible one. Most grammars in use today have only a

few symbols per production.

We can give the modified circularity test as follows:

S:Array[V] of sets of graphs;

Active: Set of V;

Begin

3/22/77 Page No. 26

EVALUATORS FOR ATTRIBUTE GRAMMARS

For X in nonterminals Do SEX] := { the null graph };

Active := V;

Comment V is terminals union nonterminals;

Repeat

1 Pick X from Active;

2 Delete X from Active;

3 For All I such that X is in the right part of P[I] Do

4 Repeat

5 Temp:= I};

6 For J:= 1 to IP[I]I - 1 Do

7 Temp:= Temp union (Pick any from S[P[I,J]]);

8 Temp:= Temp union D(P[I]);

9 Temp:= Normalclosure(Temp);

10 Temp := { (a,b):a,b are in P[I,O].att and (a,b) is in Temp};

11 If Temp is not in S[P[I,O]] Then

Begin

12 Add Temp to S[P[I,O]];

13 Add P[I,O] to Active;

End;

14 Until no new values can be added to S[P[I,O]];

15 Until Active = I};

End.

This algorithm is the same as Knuth's, except that we now

impose some constraints on the non-deterministic selection

methods which were used previously. These constraints, along

with our assumption that each production is of bounded complexi-

3/22/77 Page No. 27

EVALUATORS FOR ATTRIBUTE GRAMMARS

ty, can be used to show that the algorithm given is of linear

complexity in the size of the grammar.

To begin with, we observe that steps 4 through 14, i.e., the

inner Repeat clause, take a bounded amount of time to execute.

In this repeat clause, we are considering a single production.

This one production, in conjunction with the sets S[P[I,1]],

S[P[I,2]], ••• S[P[I,/P[I]/-1]], will be used to add new graphs,

if possible, to S[P[I,O]]. Statement 14 forces us to keep adding

new graphs, until we can add no more using only this production.

That is to say, until no matter what choice is made by the non

deterministic Pick primitive on line 7, the result is always al

ready in S[P[I,O]]. It might not seem obvious that this repeti

tion will require a bounded amount of time, but this can be seen

more clearly in light of the following observations. First, the

complexity of a production is bounded. This means that the com

plexity of each member of SeX] must be bounded, also. This im

plies that the size of each set, S[P[I,J]], must be bounded.

Now, the complexity of each production is bounded, so IP[I]I is

bounded. Therefore, in steps 4 through 14, we are examining how

a bounded number of S[P[I,J]], each of which has bounded complex

ity, can interact. While the number of interactions might be

large, it is bounded. Therefore, steps 4 through 14 require

bounded time.

The next question is: How many times are steps 4 through 14

executed? We observe that statement 3, the For clause, selects a

single production, then executes statements 4 through 14 for this

3/22/77 Page No. 28

EVALUATORS FOR ATTRIBUTE GRAMMARS

production. That is, each time we select a production, we exe

cute statements 4 through 14 once. Asking how many times state

ments 4 through 14 are executed is therefore the same as asking

how many productions are selected by the For statement, statement

3. We now come to the crux of the matter. A single production

can be selected by statement 3 at most a bounded number of times.

To demonstrate this, we observe that a production can only be

selected if some symbol in its right part is active. A symbol,

X, can become active at most a bounded number of times, because X

can only become active if we add a new graph to S[X], and the

number of possible graphs in S[X] is bounded. This can be clear

ly seen be examining statements 11 through 13. IS[P[I,O]]I is

bounded. Each time we add a new graph to S[P[I,O]], we mark

P[I,O] as active. This is the only way, outside of the initiali

zation, that a symbol can be marked as active. Thus, we can mark

each symbol as active at most a bounded number of times.

Now, each production can be selected by statement 3 at most

a bounded number of times, because to select a production, P[I],

we must have marked some symbol in its right part as active. But

we can mark each such symbol as active only a bounded number of

times, and there are a bounded number of symbols in the right

part. Therefore, each production can be selected by statement 3

only a bounded number of times.

Finally, we note that the number of productions is linear in

the size of the grammar. Therefore, the total execution time of

this algorithm is linear in the size of the grammar. This is be-

3/22111 Page No. 29

EVALUATORS FOR ATTRIBUTE GRAMMARS

cause statements 4 through 14 execute in a bounded period of

time, these statements are executed a bounded number of times per

production, and the number of productions is linear in the size

of the grammar. Q.E.D.

3/22/77 Page No. 30

EVALUATORS FOR ATTRIBUTE GRAMMARS

RANKING THE ATTRIBUTES

In the next section, we shall consider the problem of rank

ing the attributes. This problem is distinct from the problem of

sorting the attributes, and from the problem of evaluating the

attributes, once sorted. In the methods of both Jazayeri[4], and

of Bochmann[3], the problems of ranking, sorting, and evaluation

have been merged into one. This produces more efficient evalua

tors, but results in less flexibility. The division into three

distinct phases increases flexibility, to the point where arbi

trary attribute grammars can be handled, but only at the price of

decreased efficiency. While the methods of Jazayeri and of Boch

mann require a fixed number of passes to deal with the attribute

grammars which meet the restrictions that they impose, the method

to be described requires log N passes, to deal with any arbitrary

attribute grammar.

Rather than attempt to introduce the ranking algorithm slow

ly, a piece at a time, we shall give the entire algorithm at

once, and then explain, afterwards, how it works. It is given in

a Pascal-like language. The notation is similar to that of the

previous section, with one or two minor exceptions.

Data structures:

Tree = Record

att: set of attributes;

d: a relation of attributes, i.e., a set of pairs of

3/22/77 Page No. 31

EVALUATORS FOR ATTRIBUTE GRAMMARS

attributes. It can also be viewed as a directed graph;

offspring: an array of trees;

End;

Attribute = Record

position,pred:integer;

End;

It should be noted that we are considering attributes with

respect to a parse tree: that is to say, two attributes are dis

tinct if they belong to different nodes in the parse tree, even

though those two nodes are labeled with the same nonterminal, and

even though the two nodes are expanded by the same production.

Initialization of the data structure:

We shall assume that the input string has already been

parsed, and that we have available an explicit parse tree. Each

node of the parse tree is represented by an object of type Tree,

as given above. We initialize each field of a given node, T, as

follows:

3/22/77

T.att This field remains constant throughout the al-

gorithm. It is the set of attributes associated with

this node. When T is a terminal, each of the attri

butes must also be initialized. For each attribute, a,

of such a terminal, a.pred:=l. The value of a.position

is computed by the algorithm, and is initially unde

fined.

Page No. 32

T.d

EVALUATORS FOR ATTRIBUTE GRAMMARS

This field is initialized to show the dependen-

cies among the attributes associated with this node and

its direct descendants. Initially, for each subtree T,

T.d = D(Rootproduction(T», from the notation of the

previous section. T.d will next contain DTOP(T), along

with some other stuff. (The other stuff is DTOP(T[I]),

or DTOP of the offspring of T.) DTOP(T) will be comput

ed during the first pass. T.d will finally be used to

hold a somewhat different relation, a total ordering on

T.att, (instead of just the partial ordering, defined

by DTOP(T». (It should be noted at this point, that

the construct (T.offspring[1].att union . . . union

T.offspring[j].att) will appear quite frequently. The

variable j is a dummy variable, and is used simply to

indicate the last offspring of the node, T.)

T.offspring The direct descendants of T, appearing in

the same order as the corresponding symbols in the

right part of P. Note that T.offspring[I], in the no

tation of this section, is identical with T[I], in the

notation of the last section. The change was made to

bring the syntax into accord with Pascal.

THE ALGORITHM

Procedure Pass1(T:Tree);

Comment: This procedure computes DTOP(T) for every node in the

3/22/77 Page No. 33

EVALUATORS FOR ATTRIBUTE GRAMMARS

derivation tree, and adds the resulting relation to T.d. (To be

exact, it computes DTOP(T) union DTOP(T[1]) union DTOP(T[2]) un

ion etc. etc.)

Begin

For x in T.offspring and x a nonterminal Do Pass1(x);

Temp:=T.offspring[1].d union ••• union T.offspring[j].d;

T.d:= T.d union {(x,y) in Temp such that x,y in {T.att union

T.offspring[1].att union ••• union T.offspring[j].att}};

Normalclose(T.d);

End;

Procedure Normalclose(R:relation);

Comment: This procedure computes the transitive closure of R us

ing normal methods.

Begin

While there exists x,y,z such that (x,y),(y,z) in Rand (x,z)

not in R Do Add(x,z) to R;

End;

Procedure Pass2(T:Tree);

Comment: Pass2 determines the order in which the attributes may

appear. At the end of pass 2, for all nodes, T, if a,b in T.att,

then (a,b) in T.d implies a must be evaluated prior to b, i.e., b

depends on a. Pass 2 also converts the partial ordering imposed

by the semantic constraints into a total ordering. It does so by

adding artificial constraints.

3/24111 Page No. 34

EVALUATORS FOR ATTRIBUTE GRAMMARS

Begin

Normalclose (T.d);

While there exists x,y in {T.att union T.offspring[1].att union

••• union T.offspring[j].att} such that (x,y) not in T.d and

(y,x) not in T.d Do

Begin

Add«x,y» to T.d;

Normalclose(T.d);

End;

For x in T.offspring and x a nonterminal Do

Begin

While there exists y,z in x.att such that (y,z) in T.d and

(y,z) not in x.d Do Add«y,z» to x.d;

Pass2(x);

End;

End;

Procedure Pass3(T:Tree);

Comment: Pass3 computes the lengths of various sequences of at

tributes that must be adjacent in the final ordering.

Begin

For x in T.offspring and x a nonterminal Do Pass3(x);

For a in T.att Do

Begin

Temp:= {x in {T.offspring[1].att union union

T.offspring[j].att} such that (x,a) in T.d and for all b in

T.att, (b,a) in T.d implies (b,x) in T.d};

3/24/77 Page No. 35

EVALUATORS FOR ATTRIBUTE GRAMMARS

Comment: To put it another way, Temp is the set of attri

butes of the offspring of T which precede a in the total ord

ering defined by T.d, but follow all other attributes in

T.att which precede a;

a.pred:= (Sum of Temp.pred) + 1;

Comment: Temp.pred denotes the bag of numbers produced by

applying the field selector, pred, to each of the elements of

the set, Temp, in turn;

End;

End;

Procedure Pass4(T:Tree);

Comment: Pass4 determines an integer, giving the order in the

ranking, for each attribute.

Function Predecessor(x:attribute);

Begin

Comment: This function selects the predecessor of its argu

ment in the ordering defined by T.d, and the predecessor is

in T.att, or T.offspring[j].att, for some j;

If there exists a y such that (y,x) in T.d and for all z,

(z,x) in T.d implies (z=y) or (z,y) in T.d Then

predecessor:= y

Else

Predecessor := "QUIT";

End;

Function Last;

Begin

3/24/77 Page No. 36

EVALUATORS FOR ATTRIBUTE GRAMMARS

Comment: This function selects the attribute in T.att which

follows all other attributes in T.att in the ordering defined

by T.d;

select x such that for all y, y<>x implies (y,x) in T.d;
•

Last:=x;

End;

Begin

Comment: The body of Procedure Pass4;

If T=Root Then For x in T.att Do x.position := Sum of {y in

T.att such that y=x or (y,x) in T.d}.pred;

Temp:=Last;

Repeat

If Predecessor(Temp) not in T.att Then If Temp in T.att Then

Predecessor(Temp).position:=Temp.position-1

Else

Predecessor(Temp).position:=Temp.position-Temp.pred;

Temp:=Predecessor(Temp);

Until Temp="QUIT";

For x in T.offspring and x a nonterminal Do Pass4(x);

End;

3/24/77 Page No. 37

EVALUATORS FOR ATTRIBUTE GRAMMARS

Begin

Comment: this is the main procedure;

Pass1(Root);

Pass2(Root);

Pass3(Root);

Pass4(Root);

End;

3/24/77 Page No. 38

EVALUATORS FOR ATTRIBUTE GRAMMARS

Before going into a detailed discussion of the algorithm,

some global comments are in order. The algorithm is clearly di

vided into 4 separate passes, executed consecutively. Passes 1

and 3 carry information upwards in the tree,towards the root.

Passes 2 and 4 carry information downwards in the tree, towards

the leaves. The first pass carries information about the depen

dency relations of the attributes upwards. The second pass does

two things: it carries information about the dependency relations

of the attributes downwards in the tree, and it also imposes ad

ditional constraints on the dependencies, i.e., it adds artifi

cial "semantics", whose sole purpose is to reduce the number of

acceptable orderings and thus simplify the problem. The con

straints added by the second pass are not, in general, sufficient

to produce a unique ordering of the attributes, and so, in the

third pass, this ordering process is completed. The third pass

begins the job of determining what the final numbering should be.

It does this by counting the number of attributes in various

subsequences of the final ordering. By the time pass 4 is exe

cuted, enough information about the ordering has been gathered to

allow the actual assignment of numbers to each attribute, which

define their final position in the ranking.

Pass 1 computes DTOP(T) union DTOP(T[1]) union DTOP(T[2]),

etc. etc. for each node in the derivation tree. It generates

the transitive closure of the relation defined by the semantics

of the production used, and by the relations computed for the

offspring.

3/22/77 Page No. 39

EVALUATORS FOR ATTRIBUTE GRAMMARS

Pass 2 finishes the job of determining how two attributes

associated with the same node are related. That is, DTOP(T) does

not give the complete set of constraints on the order of the at

tributes in X.att. DTOP(T) provides only that information about

the ordering which can be deduced from the subtree, T. We must

also add the additional information which can be gained by exa

mining the rest of the tree. The logic of pass 2 which insures

that if x is needed by y, then (x,y) will appear in T.d is very

similar to that used in pass 1, and so will be skipped.

In addition, Pass 2 imposes further constraints which insure

that all the attributes associated with a particular production,

i.e., the attributes of T and the attributes of all the offspring

of T, are totally ordered. Because we are adding additional con

straints, we might accidentally add one constraint too many, and

produce an artificially circular definition. Examining the code

for Pass2 indicates that we add new items to the relation in two

places. In the first While statement, we cannot possibly get

into trouble, for we have tested the relation to insure that the

two elements were previously unordered with respect to each oth

er. Assume, therefore, that when we add the pair (y,z) in the

second while statement, that we have introduced a circularity in

x.d. But if we have a circularity in x.d at that point, then we

must surely have had a circularity in T.d. The circularity in

x.d can be made to involve only elements of x.att, i.e., the at

tributes associated with the node x. This is because, in any

possible circular path, the attributes from x.offspring can be

3/22/77 Page No. 40

EVALUATORS FOR ATTRIBUTE GRAMMARS

removed. If we have the sequence of attributes "a b c" in the

circularity, and a and c are in x.att, while b is not, then we

can remove b, giving "a c", and the pair (a,c) will be in x.d.

This is because x.d was computed by taking the transitive closure

over the attributes associated with the production which expands

x. Therefore, the circularity will exist among the attributes in

x.att, ignoring attributes from lower nodes in the tree. But if

the circularity involves only elements of x.att, then it must

have already appeared in T.d, for in pass 1, all elements in x.d

that involved only attributes in x.att were added to T.d. This

means that, contrary to our assumption, there was a circularity

in T.d. Thus, we will not introduce a circularity that is not

already there.

The other thing to note about pass 2, is that it defines a

total ordering on the attributes associated with a particular

production. That this is so can be seen by examining the first

While loop. If any two attributes have no relation to each oth

er, they are forced to have a relation to each other. When this

process terminates, every pair of attributes is related. This

defines a total ordering.

By the time pass 2 has finished, we have imposed a total

ordering on the attributes associated with each production, but

we have not defined a total ordering on all attributes in the

derivation tree. We must add an additional constraint to the

constraints already added in order to obtain a total ordering on

the attributes. This total ordering will be needed by pass 3.

3/24/77 Page No. 41

EVALUATORS FOR ATTRIBUTE GRAMMARS

Before proceeding further, we shall define some terminology.

Pass 2 order: a,b are in pass 2 order iff there exists

a node, T, such that a,b are in T.att, and (a,b) is

in T.d. It is understood that the value of T.d re

fered to is the value after the completion of pass 2

but prior to the start of pass 3.

Given pass 2 order, we wish to define a total order, which

specifies completely the order in which all the attributes in the

derivation tree will appear. We observe that pass 2 order fails

to be a total order because two attributes in separate subtrees

need not be related. We note that distinct subtrees must neces

sarily have a common ancestor, and it seems intuitively reason

able to define our additional constraints by forcing a relation

ship between the attributes of a node and the attributes of all

the ancestors of that node. We can then derive an indirect rela

tionship between any two attributes by tracing back to a common

ancestor, and using the relation among the ancestor's attributes

to define the relation between the two attributes in question.

(In the following, all variables have the values they would have

after the completion of pass 2.) Accordingly, we define our total

order as follows:

The pair, (a,b) is in total order iff one or more of the

following three conditions is met:

3/22/77

1.) (a,b) is in pass 2 order.

2.) If there exist nodes, T and T', with T' an ances

tor of T, such that a is in T'.att, and b is in

Page No. 42

EVALUATORS FOR ATTRIBUTE GRAMMARS

T.att, and neither (a,b) nor (b,a) is in (pass 2

order)*, then (a,b) is in the total order.

3.) (a,b) is in the total order if it is in the tran

sitive closure of the union of the relations de

fined in 1 and 2.

This definition means, essentially, that we first see if two

attributes are in (pass 2 order)*, but if they aren't in (pass 2

order)*, then we seek out the common ancestor, associate each at

tribute with an attribute of its common ancestor, and use the

order defined by the order of the ancestors.

We can view this in another fashion, as follows. Each node,

T, in the derivation tree, has a subtree descending from it.

Now, there are many attributes in this subtree. We group these

attributes into categories. We associate an attribute in the

subtree with the first attribute of the root which must follow it

in the final order. Put another way, with each attribute of the

root of the subtree, we associate those attributes in the subtree

which must directly proceed it in the final order. Now all we do

is order the categories in the order defined by the order of the

attributes of the root. In this way, the ordering of the attri

butes at the root is used to provide an ordering on all the at

tributes in the subtree. If a and b are two attributes in the

subtree, associated, respectively, with two attributes, c and d,

of the root of the subtree, then (a,b) is in the final order iff

(c,d) is in (pass 2 order)*, and (b,a) is in the final order iff

(d,c) is in (pass 2 order)*.

3/22/77 Page No. 43

EVALUATORS FOR ATTRIBUTE GRAMMARS

While the total order involves some elaborate definitions,

we never actually compute the total order, explicitly, in pass 3.

We must know that such a total order, with the properties

described, exists, but that is all. The actual code of pass 3

performs simple operations on integers. In particular, pass 3

assigns an integer value to a.pred, a value associated with each

attribute.

In the third pass, we are counting the number of attributes

in a sub tree which have been associated with each attribute in

the root of the subtree. In our imaginations, we may view these

counts, which are computed in T.pred, (a name which is derived

from the fact that T.pred counts the immediate predecessors of an

attribute), as counting the number of attributes which have been

placed in sequence next to the root attribute. Conceptually, the

process can be imagined as the concatenation of sequences of at

tributes. It can be viewed as a generalized syntax directed

translation schemata[6]. (In passing, it should be noted that the

following algorithm can be extended to give a method of determin

ing the resulting translation for an arbitrary syntax directed

translation schemata.)

If there were no constraint on memory, we could sort, (not

just rank), the attributes in accordance with the final order

during the third pass by using the following syntax directed

translation schemata, (read reference [6] before proceeding.)

The desired translation is a string of attributes, in an

order which can be evaluated. To define our translation, we as-

3/22/77 Page No. 44

EVALUATORS FOR ATTRIBUTE GRAMMARS

sociate a sequence of the syntax directed translation schemata

with each attribute. Thus, for a given symbol, X, which has m

attributes, we would have m sequences for the translation schema

ta. The rules for our translation schemata are simple. All the

attributes associated with a single production can be divided

into two groups, the attributes associated with the left part,

and the attributes associated with symbols in the right part.

Denote members of the former group by L, and of the latter group

by R. We have imposed a total ordering on all the attributes as

sociated with a single production. Therefore, we could, if we so

desired, list the attributes in this order. The resulting list

might appear as follows:

L L L R R R L R R L R L R R R R L R L

Now, as can be clearly seen, adjacent to each attribute from the

left part is a group of attributes from the right part. We asso

ciate with each L, the concatenation of the sequences associated

with the adjacent R's. The attribute, L, is concatenated on the

right of the resulting sequence. That defines, for each produc

tion in the derivation tree, the syntax directed translation

schemata. (As the reader might note, we have taken a liberty

with the strict definition of a SOTS. We have given a rule for

each production in the derivation tree, and so might have dif

ferent rules for two different applications of the same produc

tion. It is assumed that this will not cause confusion.) This

syntax directed translation schemata will translate an input

string into a sequence of attributes, and the sequence of attri-

3/22/77 Page No. 45

EVALUATORS FOR ATTRIBUTE GRAMMARS

butes will be in an order which can be evaluated.

Those satisfied with this explanation can skip to page 49.

Those desiring a more detailed treatment can continue.

We will let each attribute associated with each node, be the

header of a sequence of attributes. Thus, if a node has 5 attri

butes, then it will conceptually have 5 sequences of attributes

associated with it. Each node of the derivation tree will have

associated with it several sequences of attributes. Each of

these sequences will be composed by concatenating sequences asso

ciated with the offspring of the node, and also by concatenating

the attributes associated with this node in appropriate places.

The attributes associated with this node will be imagined as be

ing at the extreme right of these sequences, that is, all the at

tributes to the left of a given attribute precede it in the final

order, and all following attributes succeed it. To determine the

sequences which should be associated with the attributes of node

T, given the sequences associated with the attributes of the

offspring of T, we can use the following algorithm. Order the

subsequences in the ordering defined by T.d on the corresponding

attributes. (It should be noted that T.d defines an ordering on

all attributes associated with Rootproduction(T». The subse

quence to be associated with an element of T.att, call it a, is

found by concatenating a and the subsequences associated with at

tributes of the offspring of T, which are found to the immediate

left of a. (Note that there will be no subsequences which are to

the right of all of the attributes of T in the ordering. If

3/22111 Page No. 46

EVALUATORS FOR ATTRIBUTE GRAMMARS

there were, then these attributes would be isolated, and could

not affect any attributes above themselves. That this is so will

be seen more easily after the demonstration that this algorithm

will never place two attributes in reverse order in the final

ranking.)

The following property, which will be inductively passed up

the nodes of the tree, is used to show that two attributes can

never be out of order. If, at a given node in the tree, T, and

with a given attribute, a, we were to evaluate those attributes

in the subtree to the left of a in the ranking, but not including

those attributes in the subsequence associated with a, then we

would be able to evaluate the attributes in the subsequence asso

ciated with a, and we would be able to do so in order from left

to right. This is trivially true for the attributes associated

with a terminal, for all such attributes are synthetic, and al

ready defined. Assume it is true for all the offspring of T. We

now desire to show that it is true for T. This is easily shown.

In forming the subsequences associated with the attributes of T,

we preserved the ordering of the subsequences of the attributes

of the offspring of T from which they were formed. Thus, for

each subsequence which is part of the sequence of attributes

which is associated with a, we can evaluate the attributes in the

subsequences, in order, from left to right. Putting these left

to right evaluations together, in order, we can evaluate the new

ly formed sequence, in order, from left to right. Thus, this

property will hold for all the nodes in the tree, and in particu-

10/20/77 Page No. q7

EVALUATORS FOR ATTRIBUTE GRAMMARS

lar, for the root. The root, however, contains all the attri

butes in the entire tree, all nicely ordered. If these can be

evaluated from left to right, then we are surely safe.

In the third pass, we do not actually perform the concatena

tion operations outlined above. We simply keep track of the

length of the subsequences that would have been formed, had we

actually done so. In this way, the fourth and final pass knows

how many attributes there are in the tree, and how long each

subsequence is. It is then a simple matter to assign the numbers

to each attribute which define the ranking. If the total number

of attributes in the tree is N, then we assign the last attri

bute, available at the root, the number N. The attributes of the

root which precede T can be numbered simply by subtracting the

length of the subsequence to their immediate right, from the po

sition of the attribute of the root to their immediate right.

The positions of the offspring of the new root can be assigned in

a ,similar fashion, and so on, throughout the entire tree. The

attributes have been ranked. An example of these operations is

given in appendix A.

While the algorithm has been given in a form which assumes

the entire parse tree is available, it can easily be reformulated

into 4 separate passes, where the first pass is done in conjunc

tion with the original parse. Each pass requires only a stack as

deep as the parsing stack, and can leave the rest of the data on

secondary storage.

10/22117 Page No. 118

EVALUATORS FOR ATTRIBUTE GRAMMARS

SPECIALIZING THE RANKING ALGORITHM

The ranking algorithm, as given, can be made more efficient,

at the cost of some generality. If we restrict ourselves to the

class of attribute grammars which Kennedy[7] calls "absolutely

noncircular", then passes 1 and 2 can be eliminated. This class

of attribute grammars is the class which Knuth's original, (but

incorrect) circularity test would decide were noncircular. The

absolutely non-circular attribute grammars are a proper superset

of the attribute grammars which can be dealt with by Jazayeri or

Bochmann. The methods of Jazayeri and Bochmann will, in general,

prove desirable, (more efficient,) in those cases where they are

applicable.

The only function of the first two passes is to decide upon

a total order which can be associated with the attributes of each

production. If we could decide upon a total order for each pro

duction in advance, then we would not need to compute the total

order for each particular input string. We note that the ex

istence of a total order on the attributes of a production, for

all productions, is equivalent to the existence of a total order

for the attributes associated with a symbol, for all symbols.

The test for determining if an attribute grammar is absolutely

noncircular does not impose a total ordering on the attributes of

each symbol, but we can add additional artificial "semantics"

which will accomplish this goal. The statements: "This attribute

grammar is absolutely noncircular" and "We can impose a fixed to-

3/24/77 Page No. 49

EVALUATORS FOR ATTRIBUTE GRAMMARS

tal ordering on the attributes associated with each production,

which is consistent with their semantic evaluation" are

equivalent. Actual computation of a fixed total order for each

production is not difficult.

3/24/77 Page No. 50

EVALUATORS FOR ATTRIBUTE GRAMMARS

EVALUATION OF THE ATTRIBUTES

The result of the ranking algorithm is a ranking of the at

tributes. Once the attributes have been ranked, it is necessary

to sort them. It is not the purpose of this paper to consider

methods of sorting a set of ranked items, such techniques are

well covered elsewhere. We assume, therefore, that the attri

butes have been sorted, by some technique, and are now available

to us in sorted form. It is now necessary to evaluate them.

The simplest algorithm of which we can conceive is to evalu

ate them in order, from left to right, holding the evaluated at

tributes in memory until they are used. Needless to say, this

might prove expensive in terms of primary memory requirements,

because we might have to hold all the evaluated attributes in

memory at once. The next approach we might take is to somehow

organize the attributes so that we can use secondary storage in

an efficient manner, i.e., to adopt a multi-pass algorithm, as is

done by Jazayeri and Bochmann. If we insist that the algorithm

handle an arbitrary attribute grammar, then our options become

narrower. Rather than give the algorithm directly in terms of

attributes, we shall give it in more general terms, and then show

its application to attribute grammars.

3/24/77 Page No. 51

EVALUATORS FOR ATTRIBUTE GRAMMARS

EVALUATION OF GENERALIZED ADDRESS TRACES

The first concept that we must develop is that of the gen

eralized address trace. In a normal address trace, a sequence of

(binary) operations is specified on a set of operands. The

operands are simply the words of a computer, i.e., for the 6400,

the operands of an address trace would be 60 bit words. In a

generalized address trace, we will adopt the convention that ar

guments can be arbitrarily complex objects, but have bounded

size. We also assume that these named objects can be operated on

by a fixed set of arbitrary functions, which accept an arbitrary

number of arguments, instead of the usual binary operators nor

mally found in an address trace. The crucial concepts are that

we are dealing with an address space, and that within that ad

dress space are named (or addressable) objects. The named objects

are operated upon by a fixed sequence of operations, whose argu

ments are specified by names (addresses) within the address

space. An example of such a generalized address trace would be

the following:

A=I

B=PLUS(A,I)

C=TIMES(A,B)

D=SQUAREROOT(C)

E=TIMES(D,C)

B=TIMES(E,A)

3/24/77 Page No. 52

EVALUATORS FOR ATTRIBUTE GRAMMARS

C=PLUS(B,E)

The operations in such an address trace are fixed, as are

the names of the operands, and the sequence of operation applica

tions. The actual arguments, however, need not be known.

Given an arbitrary generalized address trace, it is possible

to evaluate that address trace, i.e., to assign values to the

variables in accordance with the specified operations. The algo

rithm that will follow will do this in time N log N, with primary

memory requirements that are small, and with a disk as secondary

storage device. The time bounds are those involved in shuffling

the data around, and do not include the time that might be spent

by the operations themselves. The N is more closely related to

the total memory requirements of the operands in question. This

assumes that it is possible to fit the few operands necessary to

evaluate a single result into primary memory at one time, i.e.,

the individual operands are small, compared with the primary

memory size.

We first make the following observations. An operation is

performed on a (small) set of operands, and produces a result.

The operands are referenced, and the result is produced. The

result, and some of the operands, will subsequently be referenced

again. (We discount the case in which a result is produced, but

never referenced.) If we number the applications of the opera

tions, in order, from the first, then we can assign a "time" to

the next reference. Thusly:

3/24/77 Page No. 53

EVALUATORS FOR ATTRIBUTE GRAMMARS

1 A=PLUS(2,5)

2 B=TIMES(A,8)

3 C=SQRT(B)

4 B=PLUS(C,A)

Operand A is produced at time 1. It is next referenced at

time 2. It is then referenced again at time 4. For every refer

ence, it is possible to produce the time of next reference, if

any. In the worst case, if we simply keep every named object in

primary memory from the time it is produced until the time it is

last referenced, we might occupy an amount of memory proportional

to the length of the input string. Our desire is clear: we wish

to arrange matters so that the named objects that we desire to

use for the next operation are in memory, while the objects that

we are not interested in are out somewhere on disk. How can we

arrange this?

The first observation that we make is this: objects are

referenced by different operations at different times. Ideally,

we should like to take the objects, sort them by time of refer

ence, and then apply the operations to them. (If an object is

referenced several times, we can simply make several copies of

it, and sort each copy in accordance with the time at which it is

referenced.) Unfortunately, we can't sort the objects until

they've been generated, and we can't generate them until we've

got them sorted. What we need is an incremental sort that will

allow us to do a little sorting, which will bring the operands

we're interested in to the correct place, then we do a little

3/24/77 Page No. 54

EVALUATORS FOR ATTRIBUTE GRAMMARS

evaluation, which will let us generate some new objects, then we

do a little sorting, which will position the newly generated ob

jects, and so forth. It just so happens that there is a sorting

method which can be made to have exactly this property.

Consider the following method for sorting the numbers

between 1 and 1024. First, we create two buckets, B(1,512) and

B(513,1024). Leaving B(513,1024) alone, we divide B(1,512) into

two new buckets, B(1,256) and B(257,512). Again, we divide the

first bucket into two, while leaving the second bucket alone.

B(1,256) becomes B(1,128) and B(129,256). This process continues,

until we have the following buckets:

B(1,2)

B(3,4)

B(5,8)

B(9,16)

B(17,32)

B(33,64)

B(65,128)

B(129,256)

B(257,512)

B(513,1024)

To sort, all we need do is place incoming items into one of the

log N buckets. If we should chance to desire the next item in

the ordering, and if that item has been passed through the sort

ing sequence, then it is available in the first bucket, B(1,2).

As we remove items from the sorting sequence, the structure of

3/24/77 Page No. 55

EVALUATORS FOR ATTRIBUTE GRAMMARS

the buckets will have to change. Thus, if we have removed items

1 through 16, then the buckets will look like this:

B(17,32)

B(33,64)

B(65,128)

B(129,256)

B(257,512)

B(513,1024)

At this point, it is clear that the bucket structure has broken

down, and must be reorganized before we can proceed further. We

do this by taking B(17,32) and breaking it into two buckets.

B(17,24) and B(25,32). B(17,24) is, in its turn, broken into two

buckets, B(17,20) and B(21,24). B(17,20) is then broken down

into B(17,18) and B(19,20). At this point, the process stops.

Our original bucket structure has been recreated, except that we

now have no bucket of size 16. That bucket, B(17,32), was broken

down into a sequence of smaller buckets.

B(17,18)

B(19,20)

B(21,24)

B(25,32)

B(33,64)

B(65,128)

B(129,256)

B(257,512)

3/24/77 Page No. 56

EVALUATORS FOR ATTRIBUTE GRAMMARS

B(513,1024)

As the process of simultaneous sorting and removal of sorted

items continues, the bucket structure will change again and

again. The next items required will always be available at the

front of the first bucket. Needless to say, in an actual imple

mentation, the first several buckets will be grouped into one

bucket, held in primary memory. The rest of the buckets will be

on disk, with only a buffer for each bucket in primary memory.

What is the running time of this process? We can estimate

the running time by observing the passage of attributes from

bucket to bucket. Initially, an attribute will be tossed into

some (more or less random) bucket. (Actually, there will prob

ably be locality effects. When an attribute is produced, it will

tend to be placed in one of the next few buckets, because it will

be referenced quickly. We ignore this for now, and consider only

the worst case.) At irregular intervals, the bucket an attribute

is in will be split in two. Eventually, the attribute will be

used as an argument, and the process will be terminated. It is

obvious from this description that a single attribute can pass

through no more than log N buckets. Therefore, the running time

is order N log N. (N can be either the total number of attri

butes, the total number of nodes in the parse tree, or the total

length of the input string, because all of these quantities are

within a constant factor of each other.)

If there are log(N) buckets, and each bucket has a fixed

size buffer in main memory, then the main memory requirements are

3/24/77 Page No. 57

EVALUATORS FOR ATTRIBUTE GRAMMARS

log(N), while it was promised to do the operation in a fixed pri

mary memory. This can be done by grouping the last several buck

ets together. For example, the first 7 buckets might have

representative buffers in primary memory. The 8th and succeeding

buckets would be grouped together, and would all share a single

buffer in primary memory. When the 1st through 7th buckets had

been exhausted, and we desire the first item from the 8th bucket,

we simply take all the items we've placed into the overflow buck

et, which holds the items that would have gone into the 8th and

succeeding buckets, sort them, and then distribute them among the

8th and succeeding buckets according to the rules previously de

fined. A given item would go into this overflow bucket only once,

and would be sorted, along with other items in the overflow buck

et, only once. Because the total number of items in the overflow

bucket is bounded, (because only a bounded number of new attri

butes can be produced by evaluating the bounded number of items

in buckets 1 through 7,) the sort will require a bounded amount

of effort. This would add a fixed additional overhead per item.

The resulting method, while slower, will run in a fixed primary

memory, as promised.

The method described has applications beyond attribute gram

mars. In essence, it describes a set of computations which can

be done in a very small main memory. Any computation which can

be described by a fixed sequence of operations upon a set of

operands of bounded size, can be done with a small main memory,

and in time N log N. (Again, both the time and memory require-

3/2~/77 Page No. 58

EVALUATORS FOR ATTRIBUTE GRAMMARS

ments ignore the time and memory requirements of the operations

themselves. These time and space bounds represent the additional

overhead for operand shuffling.) Two observations come to mind:

1.) It looks good. Someone must have thought of it al

ready.

2.) Just how far is it possible to push this result,

i.e., what computations actually fall into the class

described?

Both of these points deserve further research.

Some comments can be made at once, however. First, computa

tions involving pointer structures would not fall into this ca

tegory. This is because the names of the operands are not known

in advance, but are, instead, computed as they are needed.

Secondly, this would appear to be a new result concerning the

minimal memory requirements for a given address trace, given com

plete foreknowledge of the addresses involved. This question is

of some interest in operating systems theory.

A more detailed description of the algorithm can be found in

appendix B.

3/24/77 Page No. 59

EVALUATORS FOR ATTRIBUTE GRAMMARS

APPLYING THE GENERALIZED ADDRESS TRACE

The application of the method of evaluating a generalized

address trace to the evaluation of a set of ranked attributes

should be obvious. What might not be obvious is that, now that

we can evaluate a generalized address trace, we can make some

changes to the concept of an attribute grammar which will result

in simplified evaluation. We give a simple example of such a

change below.

Our change consists of

Hash(table,name,value) , and

defining two semantic functions,

Lookup(table,name). These two se-

mantic functions perform the obvious operations on a hash table.

If we assume that "table" is an attribute, and "name" is a con

stant, (a fixed sequence of characters, for example), then we can

integrate these semantic functions into our evaluation method

quite easily. The 2-tuple, (table,name), constitutes an "ad

dress", and can be considered as such in the evaluation of the

generalized address trace. If this is done, then the actual

"table" need never exist. Instead, the items in the table are

tied together by the mechanism which deals with the generalized

address trace. The advantage of this is simple: We have placed

a bound on the size of a given attribute. This bound will be

most felt when dealing with hash tables, which we wish to be of

unbounded size. If a hash table is implemented as suggested

above, then there is no bound on its size.

3/24/77 Page No. 60

EVALUATORS FOR ATTRIBUTE GRAMMARS

TIME INDEPENDENT VARIABLES

The author would like to take this opportunity to discuss

why attribute grammars are powerful, and a different method of

obtaining the same power. The basic reason that attribute gram

mars are as flexible and convenient as they are is just this:

they free the implementor from the need to collect information

scattered allover the derivation tree into one place. This col

lection function is taken over by the attribute grammar. Now, a

top down recursive descent compiler provides a great deal of

flexibility in language design, but it has one glaring flaw: you

can't find out what's going to be read in, until you've read it

in. To call a subroutine which has not yet been defined (a for

ward reference) can cause the compiler to choke. (This fact is

recognized by Wirth in the design of Pascal. He dealt with this

problem by the simple expedient of making it illegal.) The usual

method of getting around this problem is to define a two-pass

compiler. The first pass collects the forward reference informa

tion that the second pass will need to know about. In an attri

bute grammar, such "forward references" can be dealt with trivi

ally. How else could we deal with this problem?

If we adopt the viewpoint that we wish to add some extension

to the normal semantics of a top down recursive descent compiler,

then our problem can be described thusly: we wish to know, now,

information that we cannot possibly learn until some time in the

future. Our solution, given this problem statement, is equally

simple: we define a new type of variable in which information

3/24/77 Page No. 61

EVALUATORS FOR ATTRIBUTE GRAMMARS

can be carried from the future to the past. This can be done by

adding the following semantics:

1.) There is a special value, "undefined".

2.) Any variable can be assigned the value, "undefined".

3.) If a variable is referenced, and the current value of

the variable is undefined, then the value used will be

the next value assigned to that variable.

The problem of forward references can now be dealt with

easily. If we wish to know, now, about a value which we will

discover in the future, i.e., after scanning more of the input,

we proceed in the following fashion:

wishtoknow := undefined;

code which uses wishtoknow

Comment: we finally scan the information we wish to know;

wishtoknow := scan(input);

It might be objected that implementation of this concept

will prove inefficient. If implemented in full generality, this

is true. If we make a few restrictions, then implementation be

comes easy. We divide all variables into two types, normal vari

ables, and time independent variables. The normal variables can

be used in any way we desire. The time independent variables,

however, can not be used to define normal variables, nor can time

3/24/77 Page No. 62

EVALUATORS FOR ATTRIBUTE GRAMMARS

independent variables be used to change the flow of control of

the program, nor can time independent variables participate in

pointer structures. Time independent variables can depend, in

arbitrarily complex ways, on each other, and on normal variables.

With these conventions, implementation becomes simple. We exe

cute the program once, with normal variables behaving in the nor

mal fashion. We do not evaluate any of the time independent

variables. Instead, we build a data structure which shows which

time independent variables depend on which other time independent

variables, and what functions have to be applied to evaluate

them. In this structure, the time independent variables will

resemble attributes, while the functional dependencies among them

will resemble the semantic dependencies among attributes. Once

we have completed the construction of the data structure which

shows the functional dependencies among the time independent

variables, we proceed to the evaluation of them. This process is

akin to the related process for attributes. In fact, the same

algorithms can be adapted. Attribute grammars and time indepen

dent variables are similiar in terms of their power and complexi

ty. The reader is left to contemplate programs which ignore

time.

3/24/77 Page No. 63

EVALUATORS FOR ATTRIBUTE GRAMMARS

CONCLUSION

We have devised an algorithm for the efficient evaluation of

an arbitrary attribute grammar. The general method for evalua

tion can be specialized, with a resulting increase in efficiency,

but a corresponding decrease in generality. A significant sub

result was the creation of an algorithm which can efficiently

evaluate a generalized address trace. The broader applicability

of this algorithm deserves further research. A usually linear

test for circularity was given.

3/24/11 Page No. 64

EVALUATORS FOR ATTRIBUTE GRAMMARS

APPENDIX A

One picture is worth a thousand words. These pictures (fol

lowing page 66) are for the example taken from Knuth[l]. The ex

ample was also used earlier (page 14).

The action of the four passes will be exemplified by the

changes in the dependency graph. Pass1 adds additional arcs to

the dependency graph. Pass2 adds still more arcs. Pass3 assigns

a number to attributes in the graph, while Pass4 assigns a rank

to each attribute in the graph.

The dependency graph, with the direct semantic dependencies

illustrated, is shown as "Before Pass1".

Pass1 makes an upwards sweep of the dependency graph, from

the leaves to the root. (Trees are oriented upside down.) The

result is shown in "After Pass1". Notice that all dependency in

formation that can be obtained from a subtree has been summarized

in the attributes at the root of the subtree.

Pass2 makes a d.ownward sweep of the dependency graph, and

imposes a total order on the attributes associated with a produc

tion. Because showing all the newly added arcs would leave an

illustration bristling with arrows, only the arcs leading from a

node to its direct successor in the ordering are shown.

Each attribute in the picture "After Pass Two" is associated

with two different productions: the production above and the pro

duction below. Therefore, each attribute appears in two dif

ferent orderings. The first is the ordering of all attributes of

10/22/77 Page No. 65

EVALUATORS FOR ATTRIBUTE GRAMMARS

the production above, in which the particular attribute is in the

right part. The second is the ordering of all attributes of the

production below, in which the attribute appears in the left

part. The numbers in the circles go with the ordering of the

production above, while the numbers below the circles go with the

ordering of the attributes in the production below.

Pass3 makes an upward sweep, and counts the number of at

tributes from each subtree which will directly preceed the attri

butes of the root of the subtree. The numbers shown in "After

Pass3" are the pred field 6f each attribute.

Pass4 makes a downward sweep, and computes the rank of each

attribute. The numbers shown in "After Pass4" are the position

field of each attribute. The position of the attributes of the

right part of a production are computed from the known positions

of the attributes in the left part.

10/22/77 Page No. 66

0 -co - >
-...-~ >

>

lLJ .• ::::
0

V)
V)

c:x:
0...

lLJ
~
0
~

......... LLJ
CO CO

CO
en

-...
en

j """' co -U)

j

j

j

j

j

j

j

j

j

j

j

j
0

j """' co -
j

""--J > ->
j

j

j
'-

j
LU

j Z
0

j
V')
V')

it
j -

e::::
CO

j
LU
f-
LL

j
c:(

j

j

j

j

j

j

j

j

j

j

j

j - j CO - ->
>

j

j

j

-co - "-'" -I > '--

-co -...
(I)

>

-co
'-- -CI) co

........
>

-co -en

LLJ
LLJ
~ :z:
l-
V)
V)
q:
c...
~
LLJ
I-
L&...
q:

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

- j lXI -en
j

j

j
~f

j
Q

j

j

j

j

j

j

j

j

- j

j
co
'-"
>

j

j

j

j ~
~

j
0
LL..

oj
V')
V')
c::(

j
Q.

~
I.LJ

j
l-
LL..

j
c::(

........
CO

........ """"-

CXJ
en

""""-
en

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

EVALUATORS FOR ATTRIBUTE GRAMMARS

APPENDIX B

In the following section, we give a detailed description of

the sorting procedure briefly described on page 55 et sequitur.

The important points of this algorithm are:

1) items can be inserted randomly.

2) items are fetched sequentially, in order.

3) an item can be fetched any time after it has been in-

serted. Both fetching and inserting can proceed at

the same time.

q) this sorting algorithm runs in time N log N.

5) This sorting algorithm can use a small main memory,

and a disk drive (or log N tape drives) as a secondary

storage device.

The algorithm is given in pseudo-Pascal.

The "Initialize" procedure is responsible for initializing

data structures. In particular, it empties all buckets, and in

dicates the range of numbers that fall into each bucket. The ith

bucket contains numbers in the range Lower[i] to Upper[i].

The range of the buckets are initialized to:

1 to 2

3 to 4

5 to 8

9 to 16

10/22/77 Page No. 67

EVALUATORS FOR ATTRIBUTE GRAMMARS

17 to 32

etc. etc. etc.

The procedure, "Fetch", takes the next sequential item from

the data items that have been put into the bucket structure via

the "Put" procedure. If the next data item is not in the first

(smallest) bucket, then an error condition has occurred. If the

smallest bucket has more than two items in it, then it is split

in two. The smallest bucket continues to be split in two, until

it has only one or two items in it. The next sequential data

item is then taken from the smallest bucket, and returned.

The procedure, "Put", is called with the data items which

are to be put into the bucket structure.

It is assumed that a data item is always put into the bucket

structure before it is fetched.

Constant LogN: the log to the base 2 of N, where

N is the number of data items.

Type dataitem = record rank:integer ; value:any end

Var current:integer;

next:integerj

Lower: array[l •• LogN] of integer;

Upper: array[l •• LogN] of integer;

Bucket: array[l •• LogN] of bag of dataitem

Procedure Initialize;

Begin

10/22/77 Page No. 68

EVALUATORS FOR ATTRIBUTE GRAMMARS

current:=1;

next:=l;

For 1:= 1 to LogH Do

Begin

Lower[I]:=2 A (I-1)+1;

Upper[I]:=2 A I;

Bucket[I]:= I};

Eno;

End;

Procedure Fetch;

Comment given the global integer variable,

next, which specifies the rank

Begin

of the item which it is desired to fetch, this

procedure will fetch it. The variable "next"

is incremented by 1 which means that

data items will be fetched in sequence, i.e.,

"next" will take on the values 1,2,3,4, ••• in that

order;

If next) N Then

Print "error not enough data items."

Else Back:Begin

If next < Upper[current] Then

Begin

Comment next is in the current bucket. Just

10/22/77 Page No. 69

EVALUATORS FOR ATTRIBUTE GRAMMARS

return it and have done;

next:= next+l;

Return(Bucket[current][next-l])

End;

Comment next is not in the current bucket, so start

splitting big buckets into little buckets;

current:= current+l;

While Upper[current]-Lower[current] > 2 Do

Begin

Comment split the current bucket into two new

buckets, both of half the size. The

new buckets will be current, and current-l;

Lower[current-l]:=Lower[current];

bucketsize:=Upper[current]-Lower[current]+l;

Upper[current-l]:=Lower[current-l]+bucketsize/2-1;

Bucket[current-l]:={};

Lower[current]:=Upper[current-l]+l;

For y in Bucket[current] Do

If Lower[current-l] <= y.rank <= Upper[current-l] Do

Begin

remove y from Bucket[current];

Add y to Bucket[current-l];

End-
-3> '

~;
"-~urrent := current-1~

Comment now that we have a little bucket, go

10/22/77 Page No. 70

I
I

EVALUATORS FOR ATTRIBUTE GRAMMARS

back and fetch the requested data item;

Goto Back;

End;

Procedure Put(x:dataitem);

Comment this procedure takes a data item and puts

it into the proper bucket;

Begin

For I:= current to LogN Do

If Lower[I] <= x.rank <= Upper[I]

Then

Add x to Bucket[I];

End;

10/22/77 Page No. 71

EVALUATORS FOR ATTRIBUTE GRAMMARS

BIBLIOGRAPHY

1. SEMANTICS OF CONTEXT-FREE LANGUAGES, by Donald E. Knuth,

Mathematical Systems Theory, Vol. 2, No. 2(1968) pp.

127-1~5.

2. THE ART OF COMPUTER PROGRAMMING, Vol. 1, FUNDAMENTAL ALGO-

RITHMS, by Donald E. Knuth, pp. 258-268.

3. SEMANTICS EVALUATED FROM LEFT TO RIGHT, by Gregor V. Boch-

mann. Comm. of the ACM, Vol. 19, No.2, Feb. 1976.

~. ON ATTRIBUTE GRAMMARS AND THE SEMANTIC SPECIFICATION OF

PROGRAMMING LANGUAGES, by Mehdi Jazayeri, October 197~,

Report No. 1159 of the Jennings Computing Center at

Case Western Reserve University.

5. THE INTRINSICALLY EXPONENTIAL COMPLEXITY OF THE CIRCULARI-

TY PROBLEM FOR ATTRIBUTE GRAMMARS, by Mehdi Jazayeri,

William F. Ogden, and W.C. Rounds. Comm. ACM 18,12

(Dec. 1975) 697-706.

6. THE THEORY OF PARSING, TRANSLATION, AND COMPILING, Vol.

2:COMPILING, by A. V. Aho and J. D. Ullman, pp. 758 et

sequitur.

7. AUTOMATIC GENERATION OF EFFICIENT EVALUATORS FOR ATTRIBUTE

GRAMMARS, by Ken Kennedy and Scott Warren, Dept. of

Math. Sciences, Rice University, Houston, Texas,

77001. Revised version to appear in POPL proceedings.

8. FOLDS, A DECLARATIVE FORMAL LANGUAGE DEFINITION SYSTEM, by

I. Fang, STAN-CS-72-329, Computer Science Department,

Stanford University, December, 1972.

10/22/77 Page No. 72

(

(

(

(

by Ralph ~. r~erkle

RESEARCH PROJECT

Submitted to the Department of Electrical Engineering
and Computer Sciences)· Unive}"sity of Cal ifornia, Berkeley,
to partial satisfaction of the requirements for the degree
of Master of Sciences, Plan II.

App~oval for the Report and Comprehensive Examination:

COMMITTEE: , Research Adviser -------------------------
Date

Date

