
Comments in 2012 about the 1979 paper: A Certified Digital Signature

This paper was originally submitted to Ron Rivest, then editor at the Communications of the ACM, in

1979. It was accepted subject to revisions, and was revised and resubmitted in November of 1979.

Unfortunately, Ron Rivest passed over the editorship to someone else, the author became involved in a

startup, and the referees reportedly never responded to the revised draft. This version is the final

revised version submitted to the CACM in 1979.

It was finally published in Crypto 89, page 218. The slides following the paper are from the author’s

conference presentation.

An implementation that uses most of the ideas described here, along with additional ideas developed

later, is available at ftp://ftp.parc.xerox.com/pub/hashsig/hashSig1.0/. The reader is referred in

particular to ftp://ftp.parc.xerox.com/pub/hashsig/hashSig1.0/signCheck1.0.c and the comments

therein. The reader is also referred to patents #4,881,264, Digital Signature System and Method Based

on a Conventional Encryption Function, and #4,309,569, Method of Providing Digital Signatures.

The following papers are also relevant:

 "One Way Hash Functions and DES" by Ralph C. Merkle, Crypto '89.

 "A Fast Software One Way Hash Function" by Ralph C. Merkle, The Journal of Cryptology.

 "A Digital Signature Based On A Conventional Encryption Function" by Ralph C. Merkle, Crypto '87.

 "Secrecy, Authentication, and Public Key Systems" by Ralph C. Merkle, Ph.D. Thesis, Stanford

University Electrical Engineering Dept. 1979.

 "Design Principles for Hash Functions" by Ivan Bjerre Damgard, Crypto '89.

 "Constructing Digital Signatures from a One Way Function" by Leslie Lamport, Computer Science

Laboratory Technical Report October 18, 1979, CSL-98

Subsequent excellent work by Michael Szydlo, then at RSA Labs, reduced memory requirements from

log2 n to log n, where n is the number of messages that can be signed. See M. Szydlo,
"Merkle Tree Traversal in Log Space and Time," Eurocrypt '04.

It now appears that quantum computers are feasible, and will be implemented at some point in the

future. While it is at present unclear how long we have before they will be able to attack problems of

cryptographic relevance, it seems clear that we should begin developing and deploying quantum

resistant systems as soon as feasible. The lead times involved in developing, certifying, standardizing,

debugging, adopting, and distributing new systems is so long, and the time before we can reasonably

expect to retire most old systems is so much longer, that even if we begin this process today it will be

twenty years before the last vulnerable systems are retired from service.

Given these time frames, research aimed at developing deployable implementations of tree signatures

should begin now, as their performance is acceptable for many applications and the available

alternatives, assuming that quantum computers become available, are very limited.

ftp://ftp.parc.xerox.com/pub/hashsig/hashSig1.0/
ftp://ftp.parc.xerox.com/pub/hashsig/hashSig1.0/signCheck1.0.c

J

A CERTIFIED DIGITAL SIGNATURE

Ralph C. Merkle

BNR Inc.,

Palo Alto, Ca.

94304

Abstract

A practical digital signature system based on a conven­

tional encryption function which is as secure as the conven­

tional encryption function is described. Since certified con­

ventional systems are available it can be implemented quickly,

without the several years delay required for certification of

an untested system.

Key Words and Phrases: Public Key Cryptosystem, Digital

Signatures, Cryptography, Electronic Signatures, Receipts, Au­

thentication, Electronic Funds Transfer.

CR categories: 3.56, 3.57, 4.9

This work was partially supported under contracts F49620-78-C-

0086 from the U.S. Air Force Office of Scientific Research and

DAAG29-18-C-0036 from the U.S. Army Research Office. Much of

this work was done when the author was at Stanford University

in the Electrical Engineering Department.

12/14/79 Page No.1

A CERTIFIED DIGITAL SIGNATURE

1. Introduction

Digital signatures promise to revolutionize business by

phone (or other telecommunication devices)[1] but currently

known digital signature methods [5,6,7,8,10,13] either have not

been certified, or have other drawbacks. A signature system

whose security "rested on the security of a conventional crypto­

graphic function would be "pre-certified" to the extent that

the underlying encryption function had been certified. The de­

lays and cost of a new certification effort would be avoided.

Lamport and Diffie[1][10] suggested such a system, but it has

severe performance drawbacks. Lipton and Matyas[4] nonetheless

suggested its use as the only near term solution to a pressing

problem.

This paper describes a digital signature system which is

"pre-certified," generates signatures of about 1 to 3 kilobytes

(depending on the exact security requirements), requires a few

thousand applications of the underlying encryption function per

signature, and only a few kilobytes of memory. If the underly­

ing encryption function takes 10 microseconds to encrypt a

block, generating a signature might take 20 milliseconds.

The new signature method is called a "tree signature."

Page No.2

A CERTIFIED DIGITAL SIGNATURE

The following major points are covered:

1.) A discussion of one way functions.

2.) A description of the Lamport-Diffie one time signa­

ture.

3.) An improvement to the Lamport-Diffie one time signa­

ture.

4.) The Winternitz one time signature.

5.) A description of tree signatures.

12/14119 Page No.3

A CERTIFIED DIGITAL SIGNATURE

2. ~ Way Functions

One way functions[2,9J are basic to this paper. Intui-

tively, a one way function F is one which is easy to compute

but difficult to invert. If y = F(x), then given x and F, it

is easy to compute y, but given y and F it is effectively im­

possible to compute x.

Readers interested only in getting the gist of this paper

are advised to skip this section and continue with section 3.

We will parameterize F, i.e., create a family of one way

functions F1, F2 , F3 ••• Fi ••• , to improve security. It is

easier to analyze a single function which is used repeatedly

than it is to analyze all the different Fi • Often it is desir­

able for F. to also compress a large input (e.g. 10,000 bits)
1

into a smaller output (e.g. 100 bits). This will be referred

to as a one way hash function and it is required that, for all

i :

1.) Fi can be applied to any argument of any size.

2.) Fi always produces a fixed size output, which, for

the sake of concreteness, we can assume is 100 bits.

3.) Given x it is easy to compute Fi(x).

4.) It is computationally infeasible to find x' ~ x such

that Fi(x) = Ft(x').

5.) Given Fi(x) it is computationally infeasible to

12/14/79 Page No. 4

A CERTIFIED DIGITAL SIGNATURE

determine x.

An important point of notation: when we wish to concaten­

ate two arguments xl and x2 ' we will write <x 1,x 2>. Thus, if

xl and x2 are both 100 bits long, <x 1,x 2> will be their 200 bit

concatenation.

The major use of one way functions is for authentication.

If a value y can be authenticated, we can authenticate x by

computing:

F.(x) = y
1

No other input x' can be found (although they probably exist)

which will generate y. A 100 bit Y can authenticate an arbi­

trarily large x. This property is crucial for the convenient

authentication of large amounts of information. (Although a

100 bit Y is plausible, selection of the size in a real system

involves tradeoffs between the reduced cost and improved effi­

ciency of a smaller size, and the improved security of a larger

si ze.)

Functions such as Fi can be defined in terms of conven­

tional cryptographic functions[6]. We therefore assume we have

a conventional encryption function C(key,plaintext) which has a

300 bit key size and encrypts 100 bit blocks of plaintext into

100 bit blocks of ciphertext.

In order to prove that F. is a good one way function, we
1

must make some assumptions about the conventional cryptographic

12/14/79 Page No. 5

A CERTIFIED DIGITAL SIGNATURE

function on which it is based. In particular, we require that

it possess certain properties.

A "certified" encryption function C(k,p) = c, in which

length(p) = length(c) < length(k), must have the following pro-

perties:

,.) The average computational effort required to find any

four values k, k', p, and c such that C(k,p) = c =
C(k' ,p) and k ~ k' is greater than 2length(p)/2.

2.) The average computational effort required to find

four values k, k', p, and c such that C(k,p) = c =
C(k',p) and k ~ k' is 2length(p)-1 if the following

conditions hold:

a.) The plaintext, p, is known and fixed.

b.) The key space is divided into mutually dis-

joint subsets S" S2' •••

c.) k is an element of the set {k" k2 , ••• }

d.) Each ki is randomly chosen from Si.

e.) Each Si must have at least 2length(p) ele-

ments.

f.) both k and k' must be elements of the same

subset Si.

For the rest of this paper, these will be referred to as

"property 1" and "property 2."

Property' is rather clear: finding two keys k and k' for

12/14/79 Page No.6

A CERTIFIED DIGITAL SIGNATURE

the same plaintext-ciphertext pair requires a certain minimum

computational effort under all circumstances.

Property 2 requires more explanation. It states

that finding two keys k and k' for the same plaintext cipher-

text pair requires a full exhaustive search IF certain

conditions are satisfied. (Notice that property 1, which ap-

plies unconditionally, states that the required effort to find

k and k' is proportional to the square root of a simple ex-

haustive search.)

The most important condition is 2d: k must be randomly

chosen. If k is chosen randomly, then c = C(k,p) should also

be random. Given a random c, the problem of finding a k' such

that C(k' ,p) = c should require a full exhaustive search.

The additional conditions can be interpreted as meaning

that encryption of two plaintexts with two keys from two dis­

joint key spaces is effectively equivalent to encryption with

two unrelated ciphers: knowledge of how to cryptanalyze mes-

sages enciphered with keys from one space will be of no help in

cryptanalyzing messages enciphered with keys from the other key

space. The main reason that F is parameterized is to take ad-

vantage of this aspect of property 2. If i t j, then Fi and Fj

are separate one way functions: breaking Fi and breaking F j are

two independent problems. If F were not parameterized, then

the many applications of F by many different people to dif­

ferent arguments would constitute a single interrelated prob­

lem. The problem of reversing some application of F to one of

12/14/79 Page No. 7

A CERTIFIED DIGITAL SIGNATURE

many possible arguments would be much easier to solve than the

problem of reversing a particular application of F to a partic­

ular argument. This entire issue can be avoided by parameteri-

zation.

Both properties 1 and 2 will be satisfied if C is a "ran­

dom cipher," a concept described by Shannon [12]. The strength

of modern encryption functions is based on their resemblance to

random ciphers: to quote Feistel's [11] description of Lucifer,

"As the input moves through successive layers the pattern of

1's generated is amplified and results in an unpredictable

avalanche. In the end the final output will have, on the aver-

age, half O's and half 1's, ••• "

Should ciphers that do not satisfy properties 1 and 2 be

called "certified?" This is largely a question of the appropri-

ate definition of the term. It seems prudent to demand that a

cipher not be considered certified if it fails to satisfy ei­

ther property 1 or 2: the author would certainly be reluctant

to use such a cipher for any purpose.

The reader should note that property 1 is much more robust

than property 2: designing systems which depend on property 2

requires special care.

We will define Fi in stages: first we define the one way

function G<i,j>' which satisfies properties 2, 3, 4, and 5; but

whose input is restricted to 200 bits or less. We define

G<" ">(x) = y = C«x,i,j>, 0) 1,J
G<i,j> accepts up to a 200 bit input x, 50 bit parameters i and

12/14/79 Page No.8

A CERTIFIED DIGITAL SIGNATURE

j, and produces a 100 bit output y, as desired. Furthermore,

given y the problem of finding an x' such that G<i,j>(x') = y

is equivalent to finding a key x' such that y = C«x' ,i,j>, Q>.
If C satisfies properties 1 and 2 this is computationally

infeasible.

We can now define Fi in terms of G<i,j>. If the input x

to F. is 100 bits or less, then we can "pad" x by adding a's
1

until it is exactly 100 bits, and define Fi(x> = G<i,l>«O,x».

(Where a is 100 bits of 0).

If the input is more than 100 bits, we will break it into

100 bit pieces. Assume that

x = (Xl' x2 ' xn>

and that each xk is 100 bits long. Then F. is defined in terms
1

of repeated applications of G(i,j>. G(i,l> is first applied to

Xl to obtain Yl = G<i,l>«O,x 1»· Then Y2 = G(i,2>«Yl'x 2»,
Y3 = G(i,3>«Y2'X 3»' Y4 = G(i,4>«Y3'x 4», ..• Yj =
G(i,j>«Y j _1 'x j », ... Yn = G(i,n>«Yn_1 'xn». Fi<~) is de­

fined to be Yn ; the final Y in the series.

It is obvious that Fi can accept arbitrarily large values

for x. It is less obvious <though true) that it is computa-

tionally infeasible to find any vector ~' not equal to x such

that Fi(~) = Fi(~')·

"breaking" Fi •

We shall call finding such an x' as

If we assume that C is a certified encryption function,

i.e., that property 1 or 2 holds, we can prove inductively that

breaking Fi is computationally infeasible. If we utilize as-

12/14119 Page No.9

A CERTIFIED DIGITAL SIGNATURE

sumption 1 we

compute !' will

can

be at

prove

least

that the average effort required to

2Iength(p)/2; while if we use as-

sumption 2 we

compute x' will

can

be at

prove

least

that the average effort required to

2Iength(p)-1, although we require

that x' be random.

As a basis, when n = 1 the property holds because, by de-

finition, F i (.!) = G<i,1>«0,X,» = C(<O,x"i,l>,O) and the

property holds for C by assumption. To show that the property

must hold for n+' if it holds for n, we need only note that if

F (x) = F (x'), then one of the following two conditions must
i - i -

hold:

A.) xk = xk for all k < n

B.) xk ~ xk for some k < n

If (B) holds, then by the induction hypothesis we have al-

ready spent the required effort to compute xk ~ x'k' for some k

< n.

If (A) holds and x ~ x' - ,
required to compute x' n+1

then x , ~ n+
not equal

x' , • n+
to x

n+1 '
G(i 1>«y ,xt 1» equal to ,n+ n n+ G<i l>«y ,x 1>} ,n+ n n+
2Iength(p}/2 (if we use property 1), or 2Iength(p}-1

The effort

but with

must be

(if we use

property 2), by definition of G(i,n+1> and properties 1 and 2.

In those cases where the conditions of property 2 do not

hold, property 1 will.

It is important in practice to distinguish between those

cases where property 2 can be used, and those which can use

12/14/79 Page No. 10

A CERTIFIED DIGITAL SIGNATURE

only property 1. The use of property 2 allows the size of the

block cipher to be reduced by a factor of two, while still

maintaining the same level of security. This will lead to a

factor of two reduction in most storage and transmission costs

in the following algorithms.

To clarify further explanations we will omit the subscript

from F in the rest of the paper, but the reader should remember

that parameterizing F is essential to take advantage of proper­

ty 2. If property 1 is used, it is still advisable to

parameterize F.

12/14/79 Page No. 11

A CERTIFIED DIGITAL SIGNATURE

3. The Lamport-Diffie One Time Signature

The Lamport-Diffie one time signature[1] is based on the

concept of a one way function[2,9]. If y = F(x} is the result

of applying the one way function F to input x, then the key ob­

servation is:

The person who computed y = F(x} is the only person who

knows x. If y is publicly revealed, only the origi­

nator of y can know x, and can choose to reveal or

conceal x at his whim.

This is best clarified by an example. Suppose a person A

has some stock, which he can sell at any time. A might wish to

sell the stock on short notice, which means that A would like

to tell his broker over the phone. The broker, B, does not

wish to sell with only a phone call as authorization. To solve

this problem, A computes y = F(x} and gives y to B. They agree

that when A wants to sell his stock he will reveal x to B.

(This agreement could be formalized as a written contract[4]

which includes the value of y and a description of F but not

the value of x.) B will then be able to prove that A wanted to

sell his stock, because B will be able to exhibit x, and demon­

strate that F(x} = y.

If A later denies having sold the stock, B can show the

12/14/79 Page No. 12

A CERTIFIED DIGITAL SIGNATURE

contract and x to a judge as proof that A, contrary to his

statement, did sell the stock. Both F and yare given in the

original (written) contract, so the judge can compute F(x) and

verify that it equals y. The only person who could possibly

know x would be A, and the only way B could have learned x

would be if A had revealed x. Therefore, A must have revealed

x: an action which by prior agreement meant that A wanted to

sell his stock.

This example illustrates a signature system which "signs"

a single bit of information. Either A sold the stock, or he

did not. If A wanted to tell his broker to sell'O shares of

stock, then A must be able to sign a several bit message. In

the general Lamport-Diffie scheme, if A wanted to sign a mes­

sage m whose size was s bits, then he would compute F(x,) = y"

F(x2) = Y2' F(x3) = y 3' ••. F(x) = y . A and B would agree on s s
the vector Y = Y 1 ' Y2 Y • If the °th bit of m was a 1 , A . . . J_ s
would reveal xj . If the jth bit of m was a 0, A would not re-

veal x j • In essence, each bit of m would be individually

signed. Arbitrary messages can be signed, one bit at a time.

In practice, long messages (greater than 100 bits) can be

be mapped into short messages (100 bits) by a one way function

and only the short message signed. It is always possible to

use property 2 (described in section 2). F can be parameter-

ized as Fi (also described in section 2), the message can be

encrypted with a newly generated random key by the signer be­

fore it Is signed, and the random key appended to the message.

12/14/79 Page No. 13

A CERTIFIED DIGITAL SIGNATURE

The signed message will therefore be random (assuming that en­

cryption with a random key will effectively randomize the mes­

sage, a fact that is generally conceded for modern encryption

functions [11]). These steps will satisfy the conditions for

property 2. We can therefore assume, without loss of generali-

ty, that all messages are a fixed length, e.g., 100 bits.

The method as described thus far suffers from the defect

that B can alter m by changing bits that are 1's into D's. B

simply denies he ever received xj ' (in spite of the fact he

did). However, D's cannot be changed to 1's. Lamport and Dif-

fie overcame this problem by signing a new message m', which is

exactly twice as long as m and is computed by concatenating m

with the bitwise complement of m. That is, each bit m. in the
J

original message is represented by two bits, mj and the comple-

ment of m. in the new message m'. Clearly, one or the other
J

bit must be a O. To alter the message, B would have to turn a

o into a 1, something he cannot do.

It should now be clear why this method is a "one time"

signature: Each Y = Yl' Y2' ..• Y2*s can only be used to sign

one message. If more than one message is to be signed, then

new values Y1, Y2 , Y3 , ••• are needed, a new Yi for each mes­

sage.

One time signatures are practical between a single pair of

users who are willing to exchange the large amount of data

necessary but they are not practical for most applications

without further refinements. (Rabin [13] has described a dif-

12/14119 Page No. 14

A CERTIFIED DIGITAL SIGNATURE

ferent one time signature method).

Between two people, A and his broker B for example, a sig-

nature system for n possible messages might be designed as fol­

lows. A would compute

Y1 = Y 1 l' Y 1,2 Y1,2*s ,
Y2 = Y2,1' Y2,2 . . . Y2,2*s

Y3 = y 3, 1 ' Y3,2 . . . Y3,2*s

Yn = Yn ,1' Yn ,2 ••. Yn ,2*s

(where y. j = F(x. j)' and the xi . are chosen randomly).
1, 1, ,J

How-

ever, prior to using this method, A and B would have to agree

that Y = Y1, Y2 ••• Yn was to be used for signatures, and B

would have to have a copy of Y. (Y would have to be authenti-

cated in some fashion so it could be shown to a judge in the

event of a dispute, and proven to be the Y that both A and B

agreed on.) If each y .. is 100 bits long, if s = 100, and if n
1,J

= 1000 (i.e., 1000 possible messages can be signed, each 100

bits in length) then Y will be n * 2 * s * 100 = 1000 * 2 * 100

* 100 = 20,000,000 bits or 2.5 megabytes. While this might not

be overly burdensome when only two users, A and B, are involved

in the signature system, if B had to keep 2.5 megabytes of data

12/14/79 Page No. 15

A CERTIFIED DIGITAL SIGNATURE

for 1000 other users, B would have to store 2.5 gigabytes of

data. While possible, this hardly seems economical. With

further increases in the number of users, or in the number of

messages each user wants to be able to sign, the system becomes

completely unwieldy.

How to eliminate the huge storage requirements is a major

subject of this paper.

12/14/79 Page No. 16

A CERTIFIED DIGITAL SIGNATURE

~. An Improved QE! Time Signature

This section explains how to reduce the size of signed

messages in the Lamport-Diffie method by almost a factor of 2.

It can be skipped without loss of continuity.

As previously mentioned, the Lamport-Diffie method solves

the problem that 1's in the original message can be altered to

O's by doubling the length of the message, and signing each bit

and its complement independently. In this way, changing a 1 to

a 0 in the new message, m', would result in an incorrectly for­

matted message, which would be rejected. In essence, this

represents a solution to the problem:

Create a coding scheme in which accidental or inten­

tional conversion of 1's to O's will produce an ille­

gal codeword.

An alternative coding method which would accomplish the

same result would be to append a count of the 0 bits in m be­

fore signing. The new message, m', would be only 10g2 s bits

longer than the original s bit message, m. If any 1's in m'

were changed to O's, it would produce an illegal codeword by

either increasing the number of O's in m, and thus make the

count of O's too small, or it would alter the count of O's. If

the count of O's is in standard binary, changing a bit in this

12/1~/79 Page No. 17

A CERTIFIED DIGITAL SIGNATURE

count from 1 to 0 must reduce the count, and hence result in an

illegal codeword. Notice that while it is possible to reduce

the count by changing l's to O's in the count field, and while

it is possible to increase the number of O's by changing l's to

O's in the message, these two "errors" cannot be made to com­

pensate for each other.

A small example is in order. Assume that our messages are

8 bits long, and that our count is log2 8 = 3 bits long. If

our message m is

m = 11010110

Then m' would be

m' = 11010110,011

(Where a comma is used to clarify the division of m' into m and

its 0 count.)

If the codeword 11010110,011 were changed to 01010110,011

by changing the first 1 to a 0, then the count 011 would have

to be changed to 100 because we now have 40's, not 3. But

this requires changing a 0 to a 1, something we cannot do. If

the codeword were changed to 11010110,010 by altering the 0

count then the message would have to be changed so that it had

only 20's instead of 3. Again, this change is illegal because

it requires changing O's to l's.

This improved method is easy to implement and cuts the

size of the signed message almost in half.

12/14119 Page No. 18

A CERTIFIED DIGITAL SIGNATURE

5. The Winternitz Improvement

Shortly before publication, Robert Winternitz of the Stan­

ford Mathematics Department suggested a further substantial im-

provement which reduces the size of the signed message by an

additional factor of about 4 to 8. Winternitz's method trades

time for space: the reduced size is purchased with an increased

computational effort.

In the Lamport-Diffie method, given that y = F(x) and that

y is public and x is secret, a user signs a single bit of in-

formation by either making x public or keeping it secret.

In the Winternitz method we still use y and x, and make y

public and keep x secret, but we compute y from x by applying F

repeatedly, for example, y = F16(x). This allows us to sign 4

bits of information (instead of just 1) with the single y

val ue. To sign the 4 bi t message 1001 (9 in dec imal), the

signer makes F9(x) public. Ahyone can check that F1(F9(x» =

y, thus confirming that F9(x) was made public, but no one can

generate that value.

Because F9(x) is public, F10(x) can be easily computed by

anyone. Someone could then (falsely) claim that the signed

four bit message was 1010 (10 i~ decimal) rather than 1001.

Overcoming this problem requires a slight extension of the

method described in section 4, and adds only log n additional

bits.

12/14119 Page No. 19

A CERTIFIED DIGITAL SIGNATURE

6. Tree Authentication

A new protocol would eliminate the large storage require­

ments. If A transmitted Yi to B just before signing a message,

then B would not previously have had to get and keep copies of

the Yi from A. Unfortunately, such a protocol would not work.

Anyone could claim to be A, send a false Yi' and trick B into

thinking he had received a properly authorized signature when

he had received nothing of the kind. B must somehow be able to

confirm that he was sent the correct Yi and not a forgery.

The problem is to authenticate A's Y .• The simplest (but
1

unsatisfactory) method is to keep a copy of A's Y.. In this
1

section, we describe a method called "tree authentication"

which can be used to authenticate any Y. of any user quickly
1

and easily, but which requires minimal storage.

Tree authentication can also be used to solve authentica-

tion problems which do not involve digital signatures: that it

is being used to generate tree signatures in this paper should

not prejudice the reader into thinking that that is its only

application.

12/14119 Page No. 20

A CERTIFIED DIGITAL SIGNATURE

Problem Definition: Given a vector of data items Y = Y1,

Y2 , ••• Yn design an algorithm which can quickly authenticate a

randomly chosen Yi but which has modest memory requirements,

i.e., does not have a table of ~1' Y2, ••• Yn'

To authenticate the Y we apply the "divide and conquer"
i

technique. Define the function H(l,j,Y) as follows:

1.) H(i,i,Y) = F(Y i)

2.) H(i,j,!) = F« H(i,(i+j-1)/2,Y), H«i+j+1)/2,j,Y) »

H(i,j,Y) is a function of Y., Yi l' ••• Y .. H(i,j,Y) can
- 1 + J -

be used to authenticate Y. through Y .• H(1,n,Y) can be used to
1 J -

authenticate Y1 through Y. H(1,n,Y) is only 100 bits, so it
n -

can be conveniently stored. This method lets us selectively

authenticate any "leaf," Y., that we wish. To see this, we use
1

an example where n = 8. The sequence of recursive calls re-

quired to compute H(1,8,!) is illustrated in Figure 1. To au­

thenticate Y5 , we can proceed in the following manner:

1.) H(1,8,Y) is already known and authenticated.

2.) H(l,8,Y) = F{< H{1,4,!), H(5,8,Y) ». Send H(1,4,Y)

and H(5,8,Y) and let the receiver compute H(1,8,!) =
F« H(1,4,Y), H(5,8,!) » and confirm they are

correct.

12/14/79 Page No. 21

A CERTIFIED DIGITAL SIGNATURE

3.) The receiver has authenticated H(5,8,!). Send

H(5,6,!) and H(7,8,Y) and let the receiver compute

H(5,8,!) = F« H(5,6,!), H(7,8,Y) » and confirm they

are correct.

4.) The receiver has authenticated H(5,6,!). Send

H(5,5,!) and H(6,6,!) and let the receiver compute

H(5,6,Y) = F« H(5,5,!), H(6,6,Y) » and confirm they

are correct.

5.) The receiver has authenticated H(5,5,!). Send Y5 and

let the receiver compute H(5,5,!) = F(Y5) and con­

firm it is correct.

6.) The receiver has authenticated Y5•

Using this method, only 10g2 n transmissions are required,

each of about 200 bits. Close examination of the algorithm

will reveal that half the transmissions are redundant. For ex-

ample, H(5,6,!) can be computed from H(5,5,!) and H{6,6,Y), so

there is really no need to send H(5,6,!). Similarly, H{5,8,!)

can be computed from H(5,6,!) and H(7,8,Y), so H(5,8,Y) need

never be transmitted, either. (The receiver must compute these

quantities anyway for proper authentication.) Therefore, to au­

thenticate Y5 only required that we have previously authenti­

cated H(1,8,Y), and that we transmit Y5 , H(6,6,Y), H{7,8,!),

and H{1,4,Y). That is, we require 100 * log2 n bits of infor­

mation to authenticate an arbitrary Y .•
1

12/14/79 Page No. 22

A CERTIFIED DIGITAL SIGNATURE

The method is called tree authentication because the com-

putation of H(l,n,Y) forms a binary tree of recursive calls.

Authenticating a particular leaf Yi in the tree requires only

those values of H() starting from the leaf and progressing to

the root, i.e., from H(i,i,Y) to H(l,n,!). H(l,n,Y) will be

referred to as the root of the authentication tree, or R. The

information near the path from R to H(i,i,Y) required to au­

thenticate Yi will be called the authentication path for Yi'

The proof that the authentication path actually authenti­

cates the chosen leaf is similar to the proof in section 2 that

F(x) correctly authenticates x, and will not be repeated. It

is important to decide whether property 1 or property 2 should

be used: if property 1 is used the size of the authentication

path must be doubled to preserve the same level of security.

This choice depends on whether we trust the person who first

computed the authentication tree. If we do, then property 2

can be used. If we don't, then property 1 must be used. This

is because property 1 is independent of the method of computa­

tion. Property 2 requires random selection, and can be sub-

verted by non-random choices.

The use of tree authentication to create tree signatures

is now fairly clear, A transmits Yi to B, A then transmits

the authentication path for Yi , B knows R, the root of the au­

thentication tree, by prior arrangement. B can then authenti­

cate Y., and can accept a signed message from A as genuine,
1

If the jth user has a distinct authentication tree with

12/14/79 Page No, 23

A CERTIFIED DIGITAL SIGNATURE

root R., then tree authentication can be used to authenticate
J

R. just as easily as it can be used to authenticate Y .• It is
J 1

not necessary for each user to remember all the R. in order to
J

authenticate them. A central clearinghouse could accept the R.
J

from all u users, and compute H(1,u,!). This single 1-200 bit

quantity could then be distributed and would serve to authenti-

cate all the R., which would in turn be used to authenticate
J

the Yi • In practice, A would remember RA and the authentica-

tion path for RA and send them to B along with Yi and the au­

thentication path for Y ..
1

Because it is impossible to add new leaves (representing

new users) to the "user tree" once it has been computed, it is

necessary to compute and issue new user trees periodically. It

is precisely this "inflexibility" which makes it unnecessary to

trust the central clearinghouse. If it is impossible to add

new users, it is impossible to add imposters. On the other

hand, any system which allows new users to be added quickly,

easily, and conveniently can be subverted by quickly, easily,

and conveniently adding an imposter.

A different method of authentication would be for the

clearinghouse to digitally sign "letters of reference" for new

users of the system using a one time signature. This has the

virtue of convenience, but requires that the clearinghouse be

trusted not to (secretly) sign false letters of reference.

Kohnfelder[3] has suggested this method for use with other pub­

lic key cryptosystems.

12/14/79 Page No. 24

A CERTIFIED DIGITAL SIGNATURE

A full discussion of the protocols for using tree authen­

tication, digital signatures and one time signatures is well

beyond the scope of this paper.

12/14/19 Page No. 25

A CERTIFIED DIGITAL SIGNATURE

7. The Path Regeneration Algorithm

A must know the authentication path for Yi before

transmitting it to B. Unfortunately this requires the computa-

tion of H(i,j,!) for many different values of i and j. In the

example, it was necessary to compute H(6,6,Y), H(7,8,!), and

H(1,4,Y) and send them to B along with Y5 • This is simple for

the small tree used in our example, but computing

H(4194304,8388608,Y) just prior to sending it would be an in­

tolerable burden. One obvious solution would be to precompute

H(1,n,!) and to save all the intermediate computations: i.e.,

precompute all authentication paths. This would certainly al-

low the quick regeneration of the authentication path for Yi'

but would require a large memory.

A more satisfactory solution is to note that we wish to

authenticate in that order. Most of the

computations used in reconstructing the authentication path for

Yi can be used in computing the authentication path for Yi + 1•

Only the incremental computations need be performed, and these

can be made quite modest.

In addition, although the Xi (from which the Yi are gen­

erated) must appear to be random, they can actually be generat­

ed (safely) in a pseudo-random fashion from a small truly ran-

dom seed. It is not necessary to keep the Xi in memory, but

only the small truly random seed used to generate them.

12/14/79 Page No. 26

A CERTIFIED DIGITAL SIGNATURE

The result of these observations is an algorithm which can

recompute each Yi and its authentication path quickly and with

modest memory requirements. Before describing it we review the

problem:

Problem Definition: Sequentially generate the authentica­

tion paths for Y1, Y2, Y3, ••• Yn with modest time and

space bounds.

The simplest way to understand how an algorithm can effi-

ciently generate all authentication paths is to generate all

the authentication paths for a small example.

An example of all authentication paths for n = 8 is:

leaf authentication path

Y1 H(1,8,Y) H(5,8,Y) H(3,4,Y) H(2,2,Y)

Y2 H(1,8,Y) H(5,8,Y) H(3,4,Y) H(1,1,Y)

Y3 H(1,8,Y) H(5,8,Y) H(1,2,Y) H(4,4,Y)

Y4 H(1,8,Y) H(5,8,Y) H(1,2,Y) H(3,3,!)

Y5 H(1,8,Y) H(1,4,Y) H(7,8,Y) H(6,6,Y)

Y6 H(1,8,Y) H(1,4,Y) H(7,8,Y) H(5,5,Y)

Y1 H(1,8,Y) H(1,4,Y) H(5,6,Y) H(8,8,Y)

Y8 H(1,8,Y) H(1,4,Y) H(5,6,Y) H(7,1,Y)

TABLE 1

12/14/19 Page No. 27

A CERTIFIED DIGITAL SIGNATURE

If we had to separately compute each entry in table 1, then

it would be impossible to efficiently generate the authentica­

tion paths. Fortunately, there is a great deal of duplication.

If we eliminate all duplicate entries, then table 1 becomes

table 2:

leaf authentication path

Y1 H(1,8,!) H(5,8,!) H(3,4,Y) H(2,2,Y)

Y2 H(1,1,!)

Y3 H(1,2,Y) H(4,4,Y)

Y4 H(3,3,Y)

Y5 H(1,4,!) H(1,8,Y) H(6,6,Y)

Y6 H(5,5,Y)

Y1 H(5,6,Y) H(8,8,Y)

Y8 H(1,1,Y)

TABLE 2

Clearly we can generate all authentication paths by

separately computing each of the 2*n-1 entries in table 2, but

is this "efficient?" Before we can answer this question and

determine the cost of computing these entries, we must decide

on the units to be used in measuring this "cost." Because all

computations must eventually be defined in terms of the under-

12/14119 Page No. 28

A CERTIFIED DIGITAL SIGNATURE

lying encryption function C(key,plaintext) , it seems appropri­

ate to define computational cost in terms of the number of ap­

plications of C. One application of C counts as one "unit" of

computation. We shall call this "unit" the net," (pronounced

eetee) which stands for "encryption time."

Computing F requires a number of ets proportional to the

length of its input. In particular, if the input is composed

of k * 100 bits, then F requires k-1 ets.

First, we must determine the cost of computing the indivi-

dual entries. The algorithm for H(i,j,!) does a tree traversal

of the subtree whose leaves are Y., Y. l'
1 1+ Y. 2' 1+

... At

each non-leaf node in this traversal it does 1 et of computa-

tion (one application of F to a 200-bit argument). There are

j-i non-leaf nodes, so the computation requires j-i ets, ex-

cluding the leaves. The computations required to regenerate a

leaf will be fixed and finite. Let r be the (fixed) number of

ets required to regenerate a leaf. There are (j-i+1) leaves,

so the overall cost of computing H(i,j,Y) is (j-i) + (j-i+1) *
r ets. If r is large, we can approximate this by (j-i+1) * r

ets.

We can now approximate the cost of computing each entry in

table 2. There are n entries which require about r ets, n/2

entries which require about 2 * r ets, n/4 entries which re­

quire about 4 * r ets, and n/8 entries which require about 8 *
r ets. This means that the total cost of computing all entries

in a single column is about 8 • r ets. There are 4 columns, so

12/14119 Page No. 29

A CERTIFIED DIGITAL SIGNATURE

the total computational effort is about 4 * 8 * r = 32 * r ets.

In general, the computational effort required to compute

table 2 will be n * (1 + log2 n) * r ets. This is because com­

puting all the entries in each column will require n * r ets,

and there are 1 + log2 n columns.

This result implies that an algorithm which sequentially

generated the authentication paths would require about

log2 n * r (1)

ets per path, where r is a constant representing the number of

ets required to regenerate a leaf. This is quite reasonable.

(The peak computational load is also reasonable, as will be

seen in the next two paragraphs).

Although the time required to generate each authentication

path is small, we must also insure that the space required is

small. We can do this by again looking at table 2. As we

sequentially generate the authentication paths, we will sequen­

tially go through the entries in a column. This implies that

at any point in time there are only two entries in a column of

any interest to us: the entry needed in the current authentica­

tion path, and the entry immediately following it. We must

know the entry in the current authentication path, for without

it, we could not generate that path. At some point, we will

need the next entry in the column to generate the next authen­

tication path. Because it might require a great deal of effort

to compute the next entry all at once -producing a high peak

load- we need to compute it incrementally, and to begin comput-

12/14/79 Page No. 30

A CERTIFIED DIGITAL SIGNATURE

ing it well in advance of the time we will actually require it

to generate an authentication path.

As an example, H(5,a,Y) is required in the authentication

paths for Y1, Y2 , Y3, and Y4• H(1,4,Y) is required in the

paths for Y5 , Y6 , Y7 , and Ya • The values of H() for the first

authentication path must be precomputed. Once this precomputa­

tion is complete, the succeeding values of H() required in

succeeding authentication paths must be incrementally computed.

As we generate the first 4 authentication paths, we must be

continuously and incrementally computing H(1,4,Y) so that it

will be available when we reach Y5 • In addition, we must start

computing H(1,2,!) when we generate the first authentication

path; we must start computing H(7,a,Y) when we reach Y3 ; we

must start computing H(5,6,!) when we reach Y5 ; and so on.

By incrementally computing the H() values required in the

authentication paths, we insure that the peak computational ef­

fort is low (O(log2 n) per authentication path) as well as the

average computational effort.

If we assume a convenient block size (of 100 bits) and if

we ignore constant factors, then the memory required by this

method can be computed. We can first determine the memory re­

quired by the computations in each column, and then sum over

all log2 n columns. We must have one block to store the

current entry in the column. We must also have enough memory

to compute the next entry in the column. The memory required

while computing H(i,j,Y) is 1 + 10g2 (j-i+1) blocks. This as-

12/14/79 Page No. 31

A CERTIFIED DIGITAL SIGNATURE

sumes a straightforward recursive algorithm whose maximum stack

depth will be 1 + log2 (j-i+1). The memory required to recom­

pute a leaf (to recompute H(i,i,!» is ignored because it is

small (a few blocks), constant, and the same memory can be

shared by all the columns. Representing the memory require­

ments of H() in a new table in the same format as table 2 gives

table 3:

leaf memory required to compute entries

in authentication path (in blocks)

Y1 4 3 2 1

Y2 1

Y3 2 1

Y4 1

Y5 3 2 1

Y6 1

Y7 2 1

Y8 1

TABLE 3

Table 3 shows the memory required to compute each entry in

table 2. The memory required for each column will be about the

memory required during the computation of the next entry. This

means the total memory required will be about: 3 + 2 + 1 = 9

12/14/79 Page No. 32

A CERTIFIED DIGITAL SIGNATURE

blocks. (This assumes we do not recompute H(1,8,Y».

There are log2 n columns and each column requires, on an

average, (log2 n)/2 blocks. The total memory required will be

about:

2 (log2 n) 12 blocks

This means that the memory required when n = 220

(1,048,576) is about 20*20/2 = 200 blocks. For 100 bit blocks,

this means 20 kllobits, or 2.5 kilobytes. Other overhead might

amount to 2 or 3 kilobytes, giving an algorithm which requires

5 or 6 kilobytes of memory, in total.

This algorithm can be described by the following program,
.

written in a Pascal-like language with two multiprocessing

primitives added:

1.) While (condition) wait

2.) Fork (statement)

In addition, the function "MakeY(i)" will regenerate the value

of Yi. Note that n must be a power of 2.

Declare flag: array[O •• log2(n)-1] of integer;

AP: array[O •• log2(n)-1] of block;

(* AP -- Authentication Path *)

Procedure Gen(i);

Begin

12/14/79 Page No. 33

A CERTIFIED DIGITAL SIGNATURE

For j:= 1 to n step 2i+1 Do

Begin

Emit(i,H(j+2 i ,j+2 i +1_1»;

Emit(i,H(j,j+2i -1»;

End;

End;

Procedure Emit(i,va1ue);

Begin

While f1ag[i] ~ 0 wait;

AP[i]:= value;

f1 ag [i] : = 2i;

End;

Procedure H(a,b);

Begin

(* Note that in a real implementation F must be

parameterized as described 1n section 2 *)

If a = b Return(F(MakeY(a»)

Else

Return(F« H(a,(a+b-1)/2),H«a+b+1)/2,b) »);
End;

(* The main program *)

12/14/79 Page No. 34

A CERTIFIED DIGITAL SIGNATURE

Begin

For i := 0 to log2(n)-1 Do

Begin

flag[i):= 0;

Fork Gen(i) ;

End;

For j:= 1 to n Do

Begin

Print("Authentication Path ", j, " is:");

For k := 0 to log2(n)-1 Do

Begin

While flag[k] = 0 wait;

Pr int(AP[k));

flag[k]:= flag[k)-1;

End;

End;

End;

The general structure of this program is simple: the main

routine forks off 10g2 n processes to deal with the 10g2 n

columns. Then it prints each authentication path by sequen­

tially printing an output from each process. The major omis­

sion in this program is the rate at which each process does its

computations. It should be clear, though, that each process

12/14/79 Page No. 35

A CERTIFIED DIGITAL SIGNATURE

has adequate time to compute its next output. This follows

from the observation that a single call to "Emit" will generate

enough output for 2i authentication paths, while the time re­

quired to compute the next entry is approximately 2i.

There are three major ways of improving this algorithm.

First, each process is completely independent of the other

processes. However, separate processes often require the same

intermediate values of He), and could compute these values once

and share the result.

Second, values of He) are discarded after use, and must be

recomputed later when needed. While saving all values of He)

takes too much memory, saving some values can reduce the compu-

tat ion time and also reduce memory requirements. The reduction

in memory is because of the savings in memory when the saved

value is not recomputed. Recomputing a value requires memory

for the computation, while saving the value requires only a

single block.

Finally, the memory requirements can be reduced by care­

fully scheduling the processes. While it is true that each

process requires about 10g2 n blocks of memory, this is a max­

imum requirement, not a typical requirement. By speeding up

the execution of a process when it is using a lot of memory,

and then slowing it down when it is using little memory, the

average memory requirement of a process (measured in block-

seconds) can be greatly reduced. By scheduling the processes

so that the peak memory requirements of one process coincide

12/14/19 Page No. 36

A CERTIFIED DIGITAL SIGNATURE

with the minimum memory requirements of other processes, the

total memory required can be reduced.

All three approaches deserve more careful study: the po­

tential savings in time and space might be large.

Before the time requirements of the algorithm can be fully

analyzed, a description of MakeY is needed: i.e., we must

determine r in equation (1). If we assume that the improved

version of the Lamport-Diffie algorithm is used, then MakeY

must generate pseudo-random Xi vectors, from which Yi vectors

can then be generated. If the messages are all 100 bits, then

the Xi vectors will have 100 + log2 100 = 101 elements.

(Longer messages can be mapped into a 100 bit message space us­

ing one way functions as described in section 2.)

The Xi vectors can be generated using a conventional ci­

pher, C(key,plaintext). A single 300 bit secret key is re-

quired as the "seed" of the pseudo-random process which gen-

erates the Xi vectors. The output of C is always 100 bits, and

the input must be 100 bits or less. We can now define Xi,j as

Xi,j = C(seedkey,<i,j»

(Where "seedkey" is the 300 bit secret and truly random key

used as the "seed" of this somewhat unconventional pseudo-

random number generator.) The subscript i is in the range 1 to

n, while the subscript j is in the range 1 to 101. There are n

possible messages, each 100 bits in length. Each Xi is a vec-

tor x. l' 1 ,

12/14119 Page No. 31

A CERTIFIED DIGITAL SIGNATURE

Determining any xi . knowing some of the other x .. 's is
,J 1,J

equivalent to the problem of cryptanalyzing C under a known

plaintext attack. If C is a certified encryption function, it

will not be possible to determine any of the x. . wi thout al-
1,J

ready knowing the key. The secret vectors Xi are therefore

safe.

We know that Yi . = F(x ..), and that H(i,i,Y) = F(Y i) =
,J 1,J -

F (< y i , l' Y i , 2' Y i , 3' ••• Y i , 1 01>) • Th e cos t 0 f com put in g F (Y i)

is 106 ets, because Yi is 101 * 100 bits long. The total ef­

fort to compute H(i,i,!) is the effort to generate the elements

of the Xi vector, plus the effort to compute F(x i ,1)' F(x1 ,2)'

••• F(x.), plus the effort to compute F(Y i). 1,n This is 101 ets

to compute the Xi vector, 101 ets to compute the Yi vector, and

106 ets to compute F(Y.) = H(i,i,!). This is a total of 320
1

ets to regenerate each leaf in the authentication tree.

Using equation (1), we know that the cost per authentica-

tion path is 10g2 n * 320 ets. 20 For n = 2 , this is 6400 ets.

To generate authentication paths at the rate of one per second

implies 1 et is about 160 microseconds. While easily done in

hardware, this speed is difficult to attain in software on

current computers. Reducing the number of ets per authentica-

tion path is a worthwhile goal. This can effectively be done

by reducing either the cost of computing H(i,i,Y), or by reduc­

ing the number of times that H(i,i,!) has to be computed.

As mentioned earlier, keeping previously computed values

of H() rather than discarding them and sharing commonly used

12/14/79 Page No. 38

A CERTIFIED DIGITAL SIGNATURE

values of H() among the log2 n processes reduces the cost of

computing each authentication path. In fact, a reduction from
20

over 6000 ets to about 1300 ets (for n = 2) can be attained

(due to the complexity of the improvement, however, it will not

be described). (To put this in perspective, MakeY requires 320

ets and must be executed at least once per authentication path.

Therefore, 320 ets is the absolute minimum that can be attained

without modifying MakeY.) This means the path regeneration a1-

gorithm can run in reasonable time (a few seconds) even when

the underlying encryption function, C, is implemented in

software.

12/14/79 Page No. 39

A CERTIFIED DIGITAL SIGNATURE

8. CONCLUSION

Digital signature systems not requiring public key cryp­

tosystems are not only possible, they can be easier to certify.

Such a system was described which had modest space and time re­

quirements and a signature size of from 1 to 3 kilobytes. The

method described can be implemented quickly, without the long

delays due to certification.

12/14/19 Page No. 40

A CERTIFIED DIGITAL SIGNATURE

9. ACKNOWLEDGEMENTS

It is a great pleasure for the author to acknowledge the

pleasant and informative conversations he had with Dov Andel­

man, Whitfield Diffie, John Gill, Martin Hellman, Raynold Kahn,

Loren Kohnfelder, Leslie Lamport, and Steve Pohlig.

12/14119 Page No. 41

A CERTIFIED DIGITAL SIGNATURE

10. BIBLIOGRAPHY

1. Diffie, W., and Hellman, M. New directions in cryptography.

IEEE Trans. on Inform. 1T-22, 6(Nov. 1916}, 644-654.

2. Evans A., Kantrowitz, W., and Weiss, E. A user authentica­

tion system not requiring secrecy in the computer. Comm. ACM

11, 8 (Aug. 1914), 431-442.

3. Kohnfelder, L.M. Using certificates for key distribution in

a public-key cryptosystem. Private communication.

4. Lipton, S.M., and Matyas, S.M. Making the digital signa­

ture legal--and safeguarded. Data Communications (Feb. 1918),

41-52.

5. McEliece, R.J.

ic coding theory.

1918), 42-44.

A public-key cryptosystem based on algebra­

DSN Progress Report, JPL, (Jan. and Feb.

6. Merkle, R. Secure Communications over Insecure Channels.

Comm. ACM 21, 4(Apr. 1918), 294-299.

12/14119 Page No. 42

A CERTIFIED DIGITAL SIGNATURE

7. Merkle, R., and Hellman, M.

tures in trapdoor knapsacks.

5(Sept. 1978), 525-530.

Hiding information and signa­

IEEE Trans. on Inform. IT-2~,

8. Rivest~ R.L., Shamir, A., and Adleman, L. A method for ob­

taining digital Signatures and public-key cryptosystems. Comm.

ACM 21, 2(Feb. 1978), 120-126.

9. Wilkes, M.V., !!!!-Sharing Computer Systems. Elsevier, New

York, 1972.

10. Lamport, L., Constructing digital signatures from a one way

function. SRI IntI. CSL - 98

11. Feistel, H., Cryptography and computer security. Scientif­

ic American, 228(May 1973), 15-23.

12. Shannon, C.E., Communication theory of secrecy systems.

Bell Sys. Tech. Jour. 28(Oct. 19~9) 656-715.

13. Rabin, M.O., Digitalized signatures. In Foundations of

Secure Computation, R. Lipton and R. DeMilIo, Eds., Academic

Press, New York, 1978, pp. 155-166.

12/1~/79 Page No. 43

The following slides were used in the author’s presentation at

Crypto ’89

A CERTIFIED DIGITAL SIGNATURE

by

Ralph C. Merkle

XeroxPARC

Palo Alto, CA

(Work done in 1979)

SUBTITLE:

HOW MUCH MILEAGE CAN WE GET FROM

ONE-WAYHASHFUNCTION~

WHAT'S A ONE WAY HASH FUNCTION?

There are many definitions,

but for now we adopt the following:

F is a One Way Hash Function if:

1.) F accepts an input of arbitrary size

2.) F produces a fixed size output
3.) F is easy to compute
4.) Finding any pair of inputs X and X' such that

F(X) = F(X')

is hard

WE CAN BUILD F FROM A SIMPLER Fo

FO SATISFIES THE SAME PROPERTIES AS F

EXCEPT ITS INPUT SIZE IS FIXED

ASSUME THE INPUT, X, IS AN ARRAY

OF 3 ELEMENTS

X[I], X[2], X[3]

DEFINITION BY PICTURE:

FO(X[i]) =

~
F(X)

EASY TO PROVE THAT BREAKING F

IMPLIES BREAKING Fo (BY INDUCTION)

F(X) = F(X')

FO(F(X[I .. n -1]), X[n]) = Fo(F(X'[I .. n -1]), X'[n])

Either the two inputs to FO are the same
or

they are different.

If they are the same, no problem!

[inductively consider F(X[I .. n -1]) = F(X'[I .. n -1])]

If they are different, Fo has been broken
(two different inputs to Fo that produce the same output)

1$&

THE LAMPORT ONE - TIME SIGNATURE:

(WARNING! NOTATIONAL CHANGE!)

SECRET INFORMATION
X[I] X[2] X[3] X[4] X[5] X[6] X[127] X[128]

(each Xli] is randomly chosen and perhaps 100 bits)

PUBLIC INFORMATION
Y[I] Y[2] Y[3] Y[4] Y[5] Y[6] .•.. Y[127] Y[128]
compute Y[i] = F(X[i])

F must be hard to invert

TO SIGN THE 64 - bit message M = M[I] •.. M[64]
if M[i] = 0, reveal X[2*i -I]
ifM[i] = I, reveal X[2*i]

1 ,/1

NOTATION: Yi = Ydt] Yd2] •••• Yi[127] Ydt28]

THE LAMPORT SIGNATURE IS

A ONE-TIME SIGNATURE

WE NEED A NEW VALUE OF Yi
EACH TIME WE SIGN A MESSAGE

THIS MEANS WE NEED A LOT OF Vi's!

NOTATION: Y = YI Y2 Ya Y4 Y5 Y6 Y7 Ys

II is bit-wise concatenation

DEFINE H(iJ,X)

IF i = j THEN H(iJ,X) = F(Yi)

IF i > j THEN H(iJ,X) =
FO(H(i, (i + j -1)/2,X) II

H«i + j + 1)/2,j,X))

NOW COMPUTE H(1,8,X)

H(l,l,Y) H(2,2tY) H(3,3,Y) H(4,4,Y) H(5,5,Y) H(6,6,Y) H(7,7,Y) H(8,B.Y)

Y1

THE SAME INDUCTIVE PROOF CAN BE USED

TO SHOW THAT BREAKING H

IMPLIES A BREAK IN FO

1 tl

WHY IS A TREE USEFUL?

BECAUSE ANY "LEAF" CAN BE

AUTHENTICATED WITH ONLY

LOG(n) INFORMATION:

THE AUTHENTICATION PATH

1 L/

. ' FIG •. 1

. '

A STICKY PROBLEM:

HOW TO GENERATE

THE AUTHENTICATION PATH .•..•..

(IT'S IN THE PAPER)

1

A TREE SIGNATURE:
SECRETINFORMATION: THE Xdj]'s

PUBLIC INFORMATION: H(I,n,Y)

TO SIGN A MESSAGE:

REVEAL THE CORRECT SET OF XiU]'s

AND THE AUTHENTICATION PATH

TO CHECK A SIGNATURE

CHECK THE AUTHENTICATION PATH
AND CHECK THE REVEALED XiU]'s

AGAINST THE YiU]'s

1/J

CONCLUSION:

DIGITAL SIGNATURES CAN BE BUILT

FROM
ONE - WAY HASH FUNCTIONS

MORE GENERALLY

MANY AUTHENTICATION PROBLEMS
CAN BE SOLVED

WITH ONE - WAY HASH FUNCTIONS

FOIS

A USEFUL CRYPTOGRAPHIC PRIMITIVE

