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I. INTRODUCTION

The National Bureau of Standards has proposed a data encrjrption

standard (DBS) for nonmilitary governmental and commercial use. Such

a crjrptosystem can be used to provide both privacy and authentication

to messages [1,2], In many applications, authentication (a form of

digital signature) is of primary interest.

For reasons of national security, NBS, IBM (vhich designed DES),

and the National Security Agency (which participated in its evaluation),

will not divulge the results of their tests concerning the strength of

the system. Because they will also not explain the rationale behind

certain critical elements or adequately quantify the level of security,

we undertook an evaluation of DES in an attempt to determine its

strengths and weaknesses. This evaluation lasted one month and involved

approximately ten person weeks of effort. Our results are therefore

only preliminary, and it must be assumed that an adversary with greater

resources would make greater progress.

It is thus someMihat disturbing that we achieved a 50 percent sav

ings in computation over an exhaustive search. We also found suspicious

structure in the critical elements of the system (the S-boxes). This

structure could be the result of an accidental weakness, a deliberately

set trap door (i.e., hidden structure which allows those who know of it

to break the system), or no weakness at all. An explanation and further

study are needed before trust can be placed in DES. This need is en

hanced because NSA does not want a genuinely strong system to frustrate

its cr3T)tanalytic intelligence operations. As a result, DES is mildly

suspect a priori.

The types of attack to which a cryptosystem can be subjected are as

follows.

Ciphertext Only Attack; The cryptanalyst has a substantial
quantity of ciphertext (enciphered data) but only knows the
statistical structure of the plaintext (such as, E occurs
13 percent of the time, Z occurs 0.1 percent of the time).
This attack can always be mounted, and any system that suc
cumbs to it is totally useless.



Known Plaintext Attack; The cryptanalyst has a quantity of
corresponding plaintext and ciphertext. This attack occurs
if enciphered messages are later declassified (press re
leases , product announcements) or if some of the enciphered
data are known to the cryptanalyst (his portion of a set of
financial transactions). Consequently, any system which
succumbs to this attack is not secure.

Chosen Plaintext Attack: The cryptanalyst has access to

corresponding plaintext and ciphertext and can select the
plaintext to be enciphered. This type of attack is more
difficult to mount but not impossible. By proposing a sen
sitive agreement to a competitor, we might intercept an en

ciphered version sent to another location for evaluation,
and it is easier for an employee to send a simple message
(such as 0000...0) than it is for him to learn the key in
use.

In all three attacks, it is assumed the cryptanalyst can obtain a

cryptosystem (either honestly or in other ways) and hence knows how it

operates. All security resides in the secrecy of the key. No faith is

placed in secret design principles because they are too easily compro

mised. The cryptanalyst tries to determine the key so that he can de

cipher cryptograms to which he does not know the plaintext (to violate

the privacy of messages) and encipher messages to which he does not know

the ciphertext (to forge authentic looking messages).

The rule followed by NBS in selecting DBS was that it must resist a

known plaintext attack [3]. A chosen plaintext attack is often used in

this report because it can occur in practice and certification of a cryp

tosystem should utilize conservative estimates of strength.



II. SUMMARY OF POTENTIAL WEAKNESSES

1. DES is invariant under complementation of P, K, and C (plaintext,

key, and ciphertext). Section III describes how this S3mimetry can

be used to reduce search effort by 50 percent under a partially

chosen plaintext attack. With carefully chosen S-boxes, it is

possible to save another factor of two, for a total savings of 75

percent over exhaustive search. Although this exact structure is

not present in DES's S-boxes, portions of it appear and require

explanation. Section III also elaborates on this approach.

2. If the S-boxes are linear, the system would yield to a known plain

text attack with less than $1.00 worth of computation time on a

minicomputer. Although the S-boxes are not linear, as discussed

in Sections IV and V, they are much closer to linear than one would

expect. This structure is surprisingly similar to a type that can

be used to build a trap door into the system.

Other structure was also found in the S-boxes. For example, 75

percent of S4 is redundant; that is, three of its rows can be de

rived from the fourth.

3. Diffie and Hellman [4] dispute NBS* claim that "trying all possible

keys is not economically feasible" [3]. They estimate that a DES

key can be recovered by ejdiaustive search for approximately $5000

worth of computation time on a special purpose machine. Fortu

nately, the current price of this machine is in the $20 million

range and is out of reach of all groups with the possible exception

of governmental security agencies. Cost trends, however, predict

that, in 10 years, this machine will cost approximately $200,000

and recovery of one key will be $50.

Since the arguments concerning the above mentioned costs are de

tailed in [4], we do not elaborate on them here. These estimates

indicate, however, that even a small weakness will shatter the se

curity of DES. By contrast, doubling the key size to 112 bits
. 20

would increase the cost of exhaustive search to $4 x 10 and the



24cost of the special purpose machine to $10 . This would ensure

a much more comfortable margin against unforeseen weaknesses.

In the sections that follow, we use NBS' terminology for DES [6],



III. SYMMETRY UNDER COMPLEMENTATION

Claim. If P,K yields C, then P,K yields C, where overbar denotes

bit by bit complementation.

Proof.

Note that

fCRi^Kf^l) = f»(ER. + K.^^) , (1)

where E represents the expansion operation and + represents XOR or

mod-2 addition. Comple

change the value of f

mod-2 addition. Complementing both R^ and "therefore does not

fCRl.Ki^j) = . (2)

Because

Ll = Ro

Rj^ = + t(Rg,Kj) ,

complementing P (equivalently Lq,Rq) and K (equivalently as
well as K„,...,K ) complements L and R and, by induction, L ,

^ Id 11 2

R ,...,L ,R , and hence C.
^ lb lb

This property can reduce the search effort by half if two P-C pairs,

P^""C^ and available with " ^2' search enciphers
P^ with all keys K that start with a 0. The resultant ciphertext C

is compared with C^ and C^ • If C C^, the key in use was not K;

and, if C 9^ C^, the key in use was not K (which starts with a 1)
because

C = Sj^(P^) = S-(P^) (5)

= ®K<V •

where S (P) denotes the cryptogram resulting when P is enciphered
K

under K.



In a chosen plaintext attack, two plaintext-ciphertext pairs can be

obtained with P = This may be possible even in a known plaintext
X

attack. If P = 0101... is sent in idle periods to maintain synchroni

zation, the two phases 0101... and 1010... would suffice. Even if
32 9

the P. are chosen uniformly and at random, approximately 2 =4x10
^ 64

blocks (not 2 ) are needed before finding a pair of complementary plain

texts .

A second S3mimetry almost exists which would allow an additional

factor of two reduction in the search effort, for a total savings of 75

percent over exhaustive search. Although the exact structure necessary

for this symmetry is not present in DES, it is worthwhile examining for

several reasons. Before describing this symmetry, an operation (denoted

*) that complements half of P, K, and C must be defined.

If

P* = plaintext P with the 32 bits that comprise the first
16 bits of Lq and Rq complemented (complement the first
and third fourths of P after applying the initial permuta
tion)

C* = ciphertext C with the 32 bits that comprise the first
16 bits of Li0 and R-^q complemented (complement the first
and third fourths of C before applying IP""^)

K* = key K with the 28 bits that comprise the contents of
the Cq register complemented (complement the first half of
K after applying PC-1). Note that there is a notational
conflict between Cj^ as the i^^ ciphertext block and as
the contents of the 28-bit C register after the i"^^ round.
Where context does not suffice, this will be clarified "the
ciphertext or "the C register contents C^"

With these definitions, the symmetry of interest can now be stated.

C = S^(P) (6)
K

then

C* = Sj^*(P*) . (7)



The reason for this S3nnmetry almost existing is that PC-2 selects the

first 24 bits of (i*4iich are XOR'd with the first half of R^, the
third fourth of solely from the C register, and PC-2 selects

the second 24 bits of (which are XOR'd with the second half of

R^) solely from the P register. With reference to NBS' PC-2 table,
this property manifests itself in that the first 24 entries are all <28

and the last 24 entries are all >28.

Without the expansion operation E,

f(Ri,Ki^l) = (8)

and the complementation in the first and third fourths of L^R^ would
carry over to L.R. and, by induction, to L,„R,however, E pro-

-L J. lb 16

duces a slight mixing between the first and second halves of R. The

first half of ER includes bits 32 and 17 which are in the second half

of R. Similarly, bits 1 and 16 from the first half of R move into

the second half of ER.

Even with the expansion operation included, symmetry (7) can exist

if the S-boxes are properly, or rather improperly, chosen. It can be

seen from Table 1 that use of P* and K*, instead of P and K, causes

ER + K to be complemented (denoted by c) in only four positions—the

first input to 81, the sixth input to 84, the first input to 85, and the

sixth input to 88. If the output of 81 did not depend on its first in

put bit, etc. then (8) would hold and (7) would follow. Such a trap

door, however, would be extremely obvious. The first and third rows of

81 would match, as would its second and fourth rows; this same structure

would appear in 85. And 84, as well as 88, would have their first two

rows match and their last two rows match. Below is an example of 88

used in DE8 modified to be invariant to its sixth input. The structure

is glaring, especially when 81, 84, and 85 exhibit similar structure.

13

13

7

7

88

2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

11 4 1 9 12 14 2 0 6 10 13 15 3 5 8



00

Inputs

to

SI

82

S3

S4

er:

r32

rOlc

r02c

r03c

r04c

r05c

r04c

r05c

r06c

r07c

r08c

r09c

r08c

r09c

rlOc

rllc

rl2c

rl3c

rl2c

rl3c

rl4c

rl5c

rl6c

rl7

PC2

kOlc.

k02c

k03c

k04c

k05c

k06c

k07c

k08c

k09c

klOc

kllc

kl2c

kl3c

kl4c

kl5c

kl6c

kl7c

kl8c

kl9c

k20c

k21c

k22c

k23c

k24c.

Table 1

THE EFFECT OF THE * OPERATION

ER? + PC2(Kt^i)
Complemented?

.yes

.yes

Inputs

to

S5

S6

S7

S8

er:

rl6c

rl7

rl8

rl9

r20

r21

r20

r21

r22

r23

r24

r25

r24

r25

r26

r27

r28

r29

r28

r29

r30

r31

r32

rOlc

PC2(kT .)
1+1

k25,

k26

k27

k28

k29

k30

k31

k32

k33

k34

k35

k36

k37

k38

k39

k40

k41

k42

k43

k44

k45

k46

k47

k48.

ER? + PC2(Ki+i)
Complemented?

.yes

.yes



The following versions of S5 and S8 possess a much less glaring trap

door \sliich allows the other six S-boxes to remain unchanged, and yet

allows an extra degree of symmetry similar to (7).

S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

3 15 8 5 14 9 13 0 4 1 2 12 11 6 7 10

15 10 5 0 8 6 3 9 2 12 14 11 13 1 4 7

S8
.

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

15 6 1 11 2 13 4 8 0 5 7 12 9 10 14 3

7 11 4 1 9. 12 14 2 0 6 10 13 15 3 5 8

12 9 2 14 11 7 1 4 3 15 8 5 6 0 13 10

These S -boxes were chosen so that, for all 64 inputs

S5(x) = S5(x + 110100) (9)

and

S8(x) = S8(x + 001011) . (10)

The S3mimetry present within the new S5 and S8 is

C" = (11)

where the complementation pattern of c"*" and P"'" is the same as C* and
R* except bits il7, rl7, il9, rl9, ^30, rSO, f32, and r32 are also com
plemented. Referring to Table 1, complementing r32 resets the input to

SI so that its output remains unchanged under the K*,P^ operations,
and complementing rl7 resets the input to 84. Now, not only is 85's

first input complemented (because rl6c spills over), but its second and

fourth inputs are complemented as well (because rl7 and rl9 are now com

plemented) ; however, because 85 was chosen to satisfy (9), its output is

unchanged'. Similarly, with r30 and r32 now complemented, the third and



fifth as well as the sixth inputs of S8 are complemented. But S8 was

chosen so its output is unaffected by these changes. For these new S5

and S8, therefore,

f(Ri,Ki^l) = (12)

+ + +and will be changed to L^R^^ changing P to P and K to
K*. By induction, will be changed to L^^R^T^ and C to C^.

lb lb 16 16 '

completing the proof of our claim (11).

Any patterns of the form IIXXOO and OOXXll would work in (9)

and (10), respectively, by redefining the P"*" and c"*" operations. The
X's indicate bits which can be set at either 0 or 1. The two I's at

the beginning of llXXOO for Sg allow rl7 to be complemented, thereby
fixing S4. The two O's at the end ensure that r20 and r21 are not com

plemented because these spill over to S6 ; they could be complemented,

but then it would be necessary to make S6 invariant to the changes. We

could also have modified Si instead of S8, or 84 instead of 85.

In light of the above remarks, one should test to see if, for any

1 < i < 8 and any binary 6- vector c,

8i(x) = 8i(x + c) (13)

for all inputs x. Although no such i and c were found, complex

structure of the form (13) was observed, and is described in Section V.

The simplest forms found are as follows.

The mod-2 sum of the four output bits of 84 does not depend
on its sixth input bit. Letting 1 denote the binary 4-
vector of all I's,

1 . 84(x) =1 • 84(x + 000001) , (14)

which is very similar to (13). This structure is extremely
suspicious, as described in Sections IV and V.

As can be seen on page 9, the permutation going from row 1
to row 2 of the trap door 85 is the same as from row 3 to
row 4 (2->14, 12->11, etc.). In the trap door 88, the row
1-4 3 permutation matches the row 2-4 4 permutation. This is

10



a result of the structure in (9) and (10). The S4 used
in DES exhibits this property going from row l-» 2 and row

•3—> 4 (7—> 13 f 13^ 8 f etc •) •

Although the above structure does not yield a symmetry of the form

(11), more general symmetries may hold.

These ssnnmetries illustrate that the S-box structure is crucial to

DES's security, and how a careful choice of S-boxes can lead to hidden

structures that facilitate cryptanalysis for those who know its presence

and form.

Most symmetries related to (11) would be destroyed if PC-2 were

to mix the C— and D—register contents. We therefore suggest modifying

PC-2 to strengthen the algorithm.

11



IV. DANGEROUS S-BOX STRUCTURE

The last section"showed that carefully chosen S-boxes can introduce

additional degrees of symmetry and shorten the key search. This section

describes even more dangerous structures, and the next section says to

what extent such structures were found in DES.

Essentially, all of DES's strength lies in the S-boxes because all

other operations (XOR, expansion and permutation) are linear in binary
arithmetic. If the S-boxes were also linear, the overall algorithm would

be linear, and the net effect of enciphering and deciphering would be

C = AP + BK (15)

P=A~^(C - BK) . (16)

The invertible 64 x64 binary matrix A and the 64 x56 binary matrix B
depend only on the parameters of the S-boxes, and can be easily computed.
Cryptanalysis can be accomplished by

K=b"^(C - AP) , (17)

A\here B is the pseudo-inverse of B. The number of operations re

quired to compute K is approximately 64^ = 262,144 and takes only sec
onds on a minicomputer. If B does not have full rank, the computed key
is equivalent, although not necessarily equal to, the true key.

A linear S-box would signal its presence because it must have a 0

in the first position of its first row. Although the S-box shown below

is not linear, it is as weak as one that is linear.

14 13 7 4 15 12 6 5 9 10 0 3 8 11 1 2

2 1 11 8 3 0 10 9 5 6 12 15 4 7 13 14

4 7 13 14 5 6 12 15 3 0 10 9 2 1 11 8

8 11 1 2 9 10 0 3 15 12 6 5 14 13 7 4

This S-box is affine, and its output y can be written as

12



y =

10 0 10 1

0 1 0 0 0 1

110 0 10

0 11110

The general affine relation is

X +

y = Gx + h

(18)

(19)

and, if each S-box is in this form, then (15), (16), and (17) become

C = AP + BK + H

P = A~^(C - BK - H)

K= b"^(C - AP - H)

(20)

(21)

(22)

Cryptanalysis is no more difficult than before.

The S-boxes used in DBS were examined, and none were found to be

affine; however, even nonaffine S-boxes can cause problems. The above

S-box is no longer affine if four of its entries are changed, but the

"probability" that its output will match the output of the original af

fine S-box is 60/64 = 15/16 (assuming that random plaintext and key are

used and that each round of DBS is a good pseudo-random number genera

tor). If eight affine S-boxes are so modified, the probability that the

modifications will not affect the output in any of the 16 rounds is (15/

16) = 1/3870. With a large number of P-C pairs, (22) could be used

to determine a possible solution K from each pair. Bach is checked by
/\

enciphering P^ with K and watching for to result. Approximately
3870 attempts are needed. These computations require less than one hour

on a standard computer.

Because of the dangerously small 56-bit key size used in DBS, pre-

solving for even a fraction of the key bits results in a fairly rapid

solution on a special-purpose computer. Solving for 10 key bits or

equivalent information would reduce the search time and cost by a factor

of 1024.

13



The S-box shown below

9 5 1 13 4 6 14 7 11 12 3 8 10 15 2 0

14 0 3 8 15 4 2 5 12 7 6 10 13 1 11 9

4 10 9 11 7 5 6 1 15 13 12 2 0 14 3 8

15 3 0 2 5 11 4 13 1 8 7 9 14 12 6 10

is neither affine nor close to affine in a probabilistic sense, yet it

too possesses a dangerous structural flaw since

yl + y2 + y4 = xl + x3 + x4 (23)'

vhere xl to x6 and yl to y4 are the inputs to and the outputs

from the S-box. This structure is dangerous because each xi is the

sum of a bit from R and a bit from K. If the permutation P and

the expansion operation E return the selected output bits from each

S-box back to the selected input bits, then, by computing the corre

sponding sum on C and subtracting the sum on P, a linear combina

tion of the bits of K is obtained. Each independent linear combina

tion narrows the key search by a factor of 2.

Because a complete set of eight S-boxes having this property was

not devised, it is not known how successfully such a trap door can be

hidden. It appears much more difficult to find, especially if it only

holds probabilistically. The probability of its holding true must be

significantly greater than 1 divided by the key search saving factor.

For example, if 20 independent linear combinations are valid with prob-
-2 4

ability 10 , then the average savings factor is 10 , when compared to

an exhaustive search.

14



V. DES's STRUCTURE

The preceding section demonstrates the importance of determining

the structure, if any, present in the S-boxes used in DES. NBS has

stated that each row of each S-box is a permutation of the integers 0

through 15, but has refused to reveal isbether there is any additional

structure. Our first objective, therefore, was to determine if the DES

S-boxes (subject to the permutation constraint) were randomly selected

or if they were generated to possess structures which are extremely im

probable in randomly chosen boxes. The problem is complicated by the

ability of the human mind to find apparent structure in random data,

which is really not structure at all.

Despite an initial division of opinion, our group is now convinced

that the DES S-boxes were carefully chosen with certain structures in

mind.

This makes DES suspect on two grounds. First, it appears that

structure should be avoided and that a "typical" randomly chosen S-box

is at least as good as one selected from a probabilistically small,

specially structured set. Second, it is a well—established cryptographic

principle that a cryptosystem should be secure even against an opponent

who has full knowledge of the system's structure. Until NBS makes such

structural information available, very little faith can be placed in DES'

security. If someone involved in the design of DES were to turn against

it, he would have a significant advantage.

The Japanese "PURPLE" cryptosystem, broken just prior to World War

II, is a good analogy. Two years of intensive cryptanalysis was required

to discover the structure of the system; however, after the structure be

came known, keys could usually be recovered in a matter of hours [5, pp.

IB and 22].

A. Observed DES Structure

1. The least significant bit (y4) in row 1 of S3 is the complement

of the LSB in row 2 of S3. The LSB is determined by the parity (odd or

even) of the entry; however, it becomes more apparent in the Appendix

which gives the binary forms for the S-boxes, with the four rows converted

15



into four columns for reasons of space. The first column indicates x2,

x3,x4,x5, the middle four bits of the input to the S-box. (Recall that

xl and x6 determine the "row" with 00 = row 1,...,11 = row 4.)

Other complements can also be seen in the Appendix. In S2, y2 is

complemented by going from row 2 to 4. In S7, y4 is complemented by

going from row 1 to 3. And in S8, y2 is complemented by going from

row 1 to 2.

Neglecting the permutation structure, the probability of any one
•"16such behavior is 2 . The expected number of occurrences, therefore,

IS

2"^® • U) • 4 • 8 = 0.0029 =A. (24)©
The (2 )~®factor is the number of ways in which rows can be paired
within an S-box; the factor of 4 accounts for the four output possibil

ities; and 8 is the number of S—boxes. Using the Poisson approximation,

the probability of finding four such patterns is

e"W4'. =3.1 E-12 . (25)

If the permutation constraint is taken into account,

A ° •(2) •^ ®°
and the probability of finding four such patterns becomes 2.0E-9. This

is incontrovertible evidence for the presence of structure.

The possible danger associated with this behavior becomes more ob

vious when it is restated as a 50 percent XOR. For example, in S3, when

xl = 0 (i.e., in rows 1 and 2)

y4 = f(x2,x3,x4,x5) + x6 (27)

because changing x6 causes a move from row 1 to 2 (or from row 3 to 4

when xl = 1). Since xl = 0 50 percent of the time, the name's

16



derivation (50 percent XOR) is clear. A 50 percent XOR is different

from but related to a half XOR which will be of importance in later

discussions. The XOR of two binary variables (say xl and x6) can

be written as

xl + x6 = xlx6 + xlx6 . (28)

Either term on the RHS of this equation will be referred to as half of

an XOR. Note that xlx6 and xlx6 are each half of an XOR complement

(xl + x6 )

2. To generalize the above structure, a program was written to find

25 and 50 percent XORs involving bits other than xl or x6. A 25

percent XOR means that an output bit is toggled by an input bit (com

plemented when it is, with the other five inputs arbitrary but constant)

when two other inputs are held constant. A 17 page printout revealed

that the S-boxes have a much closer relationship to linear structure

than would appear safe. By way of comparison, a randomly generated set

of S-boxes had less than one page of output.

The number of 25 and 50 percent XORs found are as follows.

S-box SI 82 S3 S4 S5 S6 S7 SB

30 61 68 12 32 64 53 57
no. of 25

percent XORs

no. of 50

percent XORs

Here, S4 appears to be further from linear than the other seven S-boxes.

Surprisingly, this is not so (see item 3 on page 18).

The 14 50 percent XORs are

S-box no. 2 2 2 2 3 3 3 3 5 5 6 7 7 8

output no. 1 2 2 2 1 2 4 4 2 2 3 2 4 2

is toggled by

input no. 4 1 1 1 4 1 2 6 2 6 4 5 1 6

when

input no. 2 2 5 6 1 3 1 1 4 4 5 4 6 1

equals 1 0 0 1 1 1 0 0 1 1 0 0 0 0
* * * *

17



where * denotes a bit being complemented going from one row to another

within an S-box.

A program was also written to find "nontogglings" or invariances.

An output bit is "25 percent invariant to an input bit" if its value does

not depend on that input when two other inputs are held constant. The

small number of these in comparison to 25 percent togglings is striking.

In S-box 1 2 2 2 2 2 3 3 3 3 5 6 6 6 7 7 8 8

output no. 1 1 2 2 2 4 1 2 4 4 3 1 1 4 3 4 3 3

is invariant

to input no. 1 4 2 3 6 4 2 3 3 4 6 2 3 6 5 2 6 6

when

input no. 3 5 6 6 3 5 3 5 5 5 4 6 5 4 6 6 2 4

equals 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1

and

input no. 2 2 3 2 2 2 1 4 1 1 1 3 2 1 4 3 1 1

equals 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0

3. Examination of the above lists reveals that S4 possesses a very dif

ferent structure from the other S boxes and very few partial XORs. As a

result, we searched for other forms of structure. A complex line of

reasoning finally led us to observe that, in the binary form of S4, going

from row 1 to 2 causes yl to become y2, y2 to become yl, yS to

become y4, and y4 to become y3 ; this is also true going from row 3

to 4.

The second and fourth rows of S4 are thus entirely redundant. This

relation can be compactly expressed as

S4(x + 000001) = (2,1)(3,4) S4(x) + (x6,x6,x6,x6) , (29)

where (2,1)(3,4) means to interchange the first and second bits in ad

dition to the third and fourth bits of the quantity that follows.

Actually, S4 is 75 percent redundant because the fourth row can also

be obtained from the first. Again referring to the binary version of S4,

note that the yl values in the first half of row 1 are 01100011, which

exactly match the y4 values in the first half of row 4 when read back

ward. Similarly, yl in the second half of row 1 matches y4 in the

second half of row 4 when read backward (00101101). The same is true of
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y2 in row 1 and y3 in row 4 (11100100 and 00010111). This pattern

continues; y3 in row 1 equals y2 in row 4 read backward, half at a

time; and y4 in row 1 equals yl in row 4 read in the same manner.

This relationship can be expressed as

S4(x) + (1,4)(2,3) S4(x + 101111) = 0110 . (30)

Note that (1,4)(2,3) reverses the four bits that follow.

Another property that follows from (30) is that, in S4,

yl + y2 = g(xl,x2,x3,x4,x5) + x6 (31)

y3 + y4 = h (xl ,x2 ,x3 ,x4 ,x5) + x6 . (32)

The sums yl +y2 and y3 + y4 are toggled 100 percent of the time by

x6. This is especially surprising because S4 had the fewest 25 percent

XORs of any S-box on individual output bits, but it has a closer resem

blance to a linear S-box than any behavior found in the others. The

resemblance to the trap door S-box on page 14 is striking. Note that

(31) and (32) imply that yl +y2 +y3 +y4 does not depend on x6, as

was noted in (14) .

4. A program was \vritten to search for generalizations of the struc

ture in (13), For 1 ^ nonzero binary 6-vectors c,

tables of Si(x) +Si(x+c) were printed out. If (13) had held for i^,
c^ the associated table would have consisted of only 0000 entries be

cause + and - are the same in binary arithmetic. Although no all 0

table was found, this printout was extremely useful in determining pat

terns and structure. Because not all patterns have yet been related

to S-box structure, there is probably much structure still to be dis

covered .

One discernible pattern was that, if c had only a single 1 (e.g.,

c = 001000), all entries in the table would have at least two I's

(e.g., 0110 or 1101). Each S-box was chosen so that complementing only

one input bit, with the other five held constant, complements at least

two output bits.
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We believe that this pattern was built into the system to help

avoid a key clustering attack. If the same plaintext enciphered under

two similar keys yields two similar ciphertext blocks, one could attempt

to find a key near the correct one and then perform a local search to

determine it exactly. This is far more computationally efficient than

searching all keys. For example, determination of a key K that dif

fers from the right one in five or fewer bits requires testing only
40 . ,12

2 =10 properly spaced keys. It is then necessary to search the

approximately four million keys which differ from K in five or fewer

places to find the exact key in use. The effort required for this search

is five orders of magnitude less than for an exhaustive search and is

easily accomplished with currently available hardware.

To prevent this type of attack, the system should have strong error

propagation characteristics. The near linearity of the S-boxes may be

partially the result of the desire for this 2:1 error expansion. (Or,

if the linear structure is part of a deliberately set trap door, the

need for error expansion will probably be held responsible, and the lin

earity claimed to be a good property rather than a weakness.) Although

a large rapid avalanche of change is valuable in defeating a key cluster

ing attack, it is not worth the danger of quasi-linear S-boxes. If more

randomly chosen S-boxes would yield to a key clustering attack with only

16 rounds, we would encourage an increase in the number of rounds to give

the avalanche more time to develop.

Other patterns have been found from the c-test tables. We have

noted that, if c has a single 1, the table's entries will contain at

least two I's. If cl = c6 = 0, then we remain in the same row of the

table, and there will be at least one change in the output. (Because

each row is a permutation of 0 through 15, no value is repeated.) This

property appears in Table 2 which lists the number of 0000 entries found

for each value of c, summed over all eight S-boxes. Duplications (x

and x' = X +c) are not counted twice. Each clc6 column must sum to

256, but columns 01 and 10 show a noticeable difference; the 10 column

has four 0 entries besides the obvious one (c = 100000), while the 01

column has only the obvious 0 entry (c = 000001). This difference is

unexpected because inputs 1 and 6 are structurally equivalent from the
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Table 2

NUMBER OF 0000 ENTRIES IN ALL S-BOXES FOR EACH VALUE OF c = clc2c3c4c5c6

clc6

c2c3c4c5

00 01 10 11

0000 256 0 0
31,2,4,5,8

0001 0 28® 41
1o1.6,7

0010 0 24 25^^ 134,6,8

0011 0 15
151,4,5+ 25^

0100 0 39 37
92,3,4

0101 0
4 7

10^ 15^ 33

0110 0* 31 24 20

0111 0 11^'^ 23^"*" 34^"^

1000 0 21« 0
02,4,5,7

1001
04* 16^ 23

4 714 ''

1010 0 14^ 0
92,4,5,7

1011 0
123,5,8 12 '̂® 17^

1100 0 0
92,4,5

1101 0
g2,4,6,7 24^ 23®'®

1110 0 13^'^ 0
01,2,5,6

1111 0
^3,4,5,6 20®'®'2+

c = 001100 is the only entry with more than a single 1 which always
causes at least two changes in the output.

Superscripts denote the identity of individual S-boxes having no 0000
entries.

In c = 010010, superscript 4* indicates that S4 had at least two
bit changes in its output.

Superscripts followed by a + denote an S-box having no single bit
changes, but some 0000 entries.
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point of view of error propagation. The pattern of the four O's (when

ever c2 = 1 and c5 = 0) is indicative of still hidden structure.

5. Using the c-test printout as a guide, an attempt was made to find

simple expressions for single outputs in terms of XORs; this was done

manually and without a theoretical framework. (The Quine-McCluskey min

imization works for an inclusive OR of products, but not for an XOR.)

These preliminary results are surprisingly encouraging for a cryptana-

lyst. For example, in S2,

y2 = xl + x5 + x2x3 + x2x4 + x3x6

+ x2x4x6 + x3x4x5x6 + xlx2x3x5x6

+ xlx2x4x5x6 . (33)

Dropping the last three terms results in an extremely simple expression

for y2 which is correct 57/64 of the time. It is probably possible to

find an approximation of comparable complexity with a higher probability

of being correct than this simple truncation operation.

When xl =5 1, y2 has the even simpler expression

y2 = xl + x2 + x3 + x5 + x6 + xlx3x5 . (34)

In S3,

y4 = xl + x2 + x3 + x5 + x6 + xlx3x5 + xlx4x5 + xlx4x6

+ xlx2x3x5 + xlx2x5x6 + xlx2x3x4x6 (35)

which, when xl = 0, can be transfoimied into

y4 = x2 + x6 + x3x5 + x4x5 . (36)

Note the half XOR, x4x5, and the half XOR complement, x3x5.

These expressions indicate that an attempt to solve for K in terms

of P and C (or parity sums thereof) may result in a simpler set of
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equations than one would expect. Because x+x = 0, a significant

number of cancellations occur, especially if half XORs combine to form

regular XORs. As a result, if approximations to the S-boxes can be

found in terms of an XOR of products with not many terms, it may be

possible to solve the final set of equations on a large general-purpose

computer. Further study is required to find such approximations, to

estimate the number of terms after 16 rounds, and to determine the

difficulty of solving the resultant set of equations.

6. The rows of SI, S2, S3, and S4 appear to have a different permuta

tion composition from those of S5, S6, S7, and S8. Each of the four

rows of SI represents an even permutation, and the rows of S2, S3, and

S4 all represent odd permutations; the remaining S-boxes mix odd and

even permutations. To be exact, S5*s rows are OEEE, S6*s are OEEO, S7's

are OOOE, and S8*s are OOOE. The same parity permutation in rows 2 and

3 possibly indicates some relationship between these two rows.

The parity of a permutation is calculated by noting its cycle

structure. For example, row 1 of SI has cycles (0,14)(1,4,2,13,9,10,

6,11,12,5,15,7,8,3). Each cycle of even length is assigned the value 1

and each cycle of odd length is assigned the value 0. These values are

then added modulo-2 to obtain the parity (1^ odd O-^even) of the permu

tation.

7. If structure in the S-boxes leads to a trap door, it may have to be

coupled to the permutation P which is part of f(R,K). There is a

slight indication of such coupling, but it is probably only an example

of seeing "patterns" in random data. Obviously, the all-0 input to

f(R,K) is special. Surprisingly, its output in a hexadecimal represen

tation is D8D8DBBC. If the permutation P is deleted, 0 maps into a

more random looking pattern, EFA72C4D. There is a similar slight indi

cation of coupling to the expansion operation because the expanded form

of D8D8DBBC is 27,49,27,49,27,55,55,57. We have separated the expanded

version into eight 6-bit bytes (represented as decimal integers 0 to 63)

because this is how it enters the eight S-boxes. This shows that the

context of each D, 8, and B (the bits on either side of the 4-bit group)

is the same.
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8. A program was written to count the number of matches between pairs

of rows of S-boxes, both within an S box and between two different ones.

The number of agreements varied from 0 to 7, neglecting comparisons of a

row to itself which always produces 16 matches. Considering pairs of

rows in different S-boxes and then pairs in the same box resulted in the

following number of occurrences of i matches.

i 0 1 2 3 4 5 6 7

no. of pairs of rows

in different S-boxes

with i matches

1B2 144 73 36 5 3 4 1

no. of pairs of rows

in same S-box with

i matches

43 3 1 1 0 0 0 0

The noticeable difference between intra-S-box matches and inter-S-box

matches is partly attributable to the requirement that any single bit

change in the input to an S-box produces at least two bit changes in

the output. As a result, there can be no agreement between rows 1 (00)

and 2 (01), rows 1 and 3 (10), rows 2 and 4 (11), and rows 3 and 4. Of

the 43 zero matches, 32 are due to this effect. Even the remaining i

count (11,3,1,1,0,0,0,0) differs moderately from the inter-S-box count

when both are normalized, which indicates dependencies (negative corre

lation) between the rows of an S-box.

In the distribution of i in the inter-S-box count, four or more

matches occur only 13 times. Eight of these 13 (62 percent) occur be

tween adjacent S-boxes (including SI as being adjacent to SB), although

these account for only 29 percent of the row-pairs counted. This is

indicative of dependencies, with a positive correlation, between adja

cent S-boxes.

9. With reference to the Appendix, in SB the fourth entry in each row

is the bit by bit complement of the seventh entry; similarly, the elev

enth and fifteenth entries in each row are complements. These were the

only two cases of this structure found and are probably the result of

some higher level of structure in SB. (Similar small observations led
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to the simple description of S4 noted in 3 above•) Another anomaly

(similar to another initial observation on S4) is that a 6 in row 1 (or

2,3,4) is always paired with a 9 in row 3 (or 4,1,2). Nines and 6*s

seem to be together much more often than expected in other S-boxes also.

A total of 11 pairings (in Si through 88, the numbers are 2,1,0,0,1,1,2,

4) were found, whereas only six are expected on probabilistic grounds.

Another anomaly similar to the 75 percent redundancy in 84 is ex

hibited by 88 since y4 in rows 1 and 3 equals ^ in rows 2 and 4,

respectively. This could be indicative of a more general and, as yet,

unfound structure in 88.

B. Lack of Structure

1. No 8 box is affine. Further, the function which interchanges the

rows is not affine.

Letting x^ = 000000, x^ = 000010, x^ = 000100, and x^ = 000110,
if Si is affine,

Si(x^) + S±(x^) + Si(x^) = 0000 . (37)

This was a simple test because the four values on the LH8 constitute the

first four entries in the first row of Si. The results were negative.

Using the first four entries in another row tests for affinity of

the 4-bit to 4-bit mapping defined by that row. The test results were

negative for all 32 rows (four in each 8 box). This was unexpected be

cause even a nonaffine mapping will pass the test (37) approximately one

time in 16 and will require additional tests to reveal its nonaffinity.
32Because (15/16) = 0.13, the rapidity of our test is mildly surprising.

If the fact that each row is a permutation is taken into account, the

probability of such a rapid, negative test result drops even further to
32

(0.9231) = 0.077.

A similar affinity test was performed on the 2-bit to 4-bit mappings

which result by fixing the middle four inputs to an S-box. The test is

to XOR the first entries in each row (e.g., in SI does 14 +0 +4 +15 = 0?,

where + denotes XOR). All eight tests were negative.
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The overall algorithm was also tested for affinity by holding the
64 63 62 62key fixed and enciphering the plaintexts 0 ,0 1, 0 10, 0 11 and

XORing the resultant ciphertexts. The result was negative.

2. As noted above, no S-box is invariant under x x + c for any

2.*

3. No S-box is equivalent to any other S-box under permutation and

partial complementation of inputs and outputs. Further, except within

S4, whose structure has already been discussed, no output of any S-box

is equivalent to another output of that or another S-box under comple

mentation and permutation of inputs and possible complementation of the

output. The same lack of equivalences applies to inputs.

4. Each row of an S-box defines a function from the set of integers 0

through 15 to itself. The method of finite differences was used to de

termine if these functions can be represented as low degree pol3momials,

modulo some integer N > 16. No such structure was found for any N; for

example, when N = 17, no row can be described by a poljmomial of degree

less than 14.

5. Adding 1 to each element of a row of an S-box produces the numbers

1 through 16, which are the nonzero residue classes modulo-17. Each row,

therefore, can represent a function f(x) from the integers 0 through

15 to the nonzero residue classes modulo-17. Let g be a primitive root
3.X-tbmodulo-17 (for example, g = 5). If f(x) = g , mod-17 for some in-

2
tegers a and b, then f(0) . f(2) = f(l) mod-17. This test proved

that no row of any S-box can be described by a function with the above

form.

6. Polynomial structure for finite fields of order 16: The numbers 0

through 15 can be identified with pol3niomials mod-2 of degree less than
3 2

4; for example, 13 = 1101 in binary corresponds to x +x +1. These

pol3momials of degree less than four form a field with 16 elements ; mul

tiplication is performed modulo an irreducible, degree 4 poljmomial g(x).
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Any map from a finite field to itself is a polynomial function, but the

degree of this poljmomial depends on the choice of g(x). For example,

there is at most one (and usually not any) g(x) for which the function

has the form F(y) = Ay +B, where A and B are elements of the fi

nite field. It was necessary, therefore, to develop a test for low de

gree polynomial structure which was invariant to g(x).

Suppose there is a function F(y) such that, for some choice of
4 3 2g(x), F(y) can be represented in the form F(y) = Ay +By +Cy +Dy+

E, wiiere A,B,C,D,E are field elements. The following identity then

follows.

F(0) + F(l) + F(x) + F(x + 1) + F(x^)

2 2 2+ F(x + 1) + F(x + x) + F(x + X + 1) ss 0 (38)

In terms of the original S-box notation, this means that, if there is

some g(x) for viiich the function F is a polynomial of degree <4,

then

F(0) + F(l) + F(2) + F(3) + F(4) + F(5) + F(6) + F(7) = 0 . (39)

Similarly,

F(0) + F(2) + F(4) + F(6) + F(8) + F(10) + F(12) + F(14) = 0 (40)

must hold. Since no row passed both tests, there is no polynomial

structure of degree <4 in any row of any S-box, regardless of the

choice for g(x).

The inverses of the maps given by a few of the rows were also

checked for polynomial structure by the above test and, again, the

results were negative.

7. A rank test was performed on f(R,K) to determine whether the

mod-2 sum of any subset of the 32 outputs was equal to the sum of any

subset of the 48 inputs. This was done by taking 80-vectors whose
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first 48 and last 32 components were the inputs to and the outputs from

the eight S-boxes. Because a matrix of rank 80 could be generated with

such vectors as its columns, no such linear relationship held between

input and output.

By adding a 1 to each of the 80-vectors, a test was performed to

determine whether the input and output sums are always complements.

Again, no such relationship holds.

The probabilistic linearity discussed following (22), however,

would not appear in these tests. More finely tuned tests would detect

this linearity but there was no time to implement them.

8. In another test, P = 0 was enciphered under each of the 56 unit
55vector keys (such as K = 0 1) , and K = 0 was used to encipher each

32 32 64unit vector plaintext. Also, P = (01) , (10) , and 1 , and K =
28 28 56(01) , (10) , and 1 , were used in various pairings. The resultant

ciphertexts were examined for regularity or relationships. Aside from

the P,K,C to P,K,C effect noted in Section III, none was found by

visual examination.

The most unusual finding (which led to the discovery of the comple-
64 56mentation symmetry) was that P = 0 , K = 1 results in ciphertext =

CAAAAF4DEAF1DBAE (in hex representation). The four consecutive A's are

somewhat surprising, but are probably a random pattern.

9. Schroeppel proved the following theorem which was used to show that

exact expressions for any output of 81 or 84, as an XOR of products,

will involve at least one product of five variables. A program should

be written to check the manual calculations for 81 and 84 and to extend

them to the other 8-boxes.

Theorem 5.1. A Boolean function of N variables can be expressed as an

XOR of product terms, each of degree <D (i.e., with D or fewer

literals) if and only if for all restrictions of the function to

D+1 variables (i.e., N-D-1 variables are held constant), y

takes on the value 1 an even number of times in the 2^"*"^ points
of the restricted domain.
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Example. y = xlx2 + x2x3 + x4 takes on 16 values, eight of which are

1 and eight of which are 0; therefore, D+l<4 or D<3. Re

stricting the function by holding xl constant yields a {1,0}

count of 4,4 both when xl=0 and when xl = l. Similarly, hold

ing x2,x3 or x4 at 0 or at 1 yields a count of 4,4; therefore,

D < 2. Holding x3 = 0, x4 = 0 yields a count of 1,3, so D>1.

Proof of Theorem 5.1.

If y = f(xl,x2,...,xN) has terms of degree at most D, each term

has an even number of I's on any D+1 restriction because the active

(nonconstant) part of each term repeats 2 times, where k=D+l-M>l

and M < D is the number of active variables in the term. But then y

has an even number of l*s on any D+1 restriction since it is the

"parity check" on all terms•

The proof in the other direction uses mathematical induction. The

shaded area in the figure below indicates the region N>1, D<N-1

for which the result must be proved.

The first step is to prove the re

sult for the N axis (D = 0) and

then to induct on N and D to show

that, if it is true for N and D,

it is also true for N+1 and D+1.

This will prove it for the entire

region.

To establish the base for the

induction (D = 0), it must be shown

that, if y=f(xl,x2,,,,,xN) has an

even number of l*s in all restrictions to D +1 = 1 variables, then y
Nis either constantly 0 or constantly 1 for all 2 values of its argu

ment. An example with N = 3 illustrates why the existence of Gray

codes (which "count" through all 2^ binary N-vectors in such a manner
that adjacent counts differ in only one bit) implies the result.

For N = 3, the set {000,001,011,010,110,111,101,100} is a Gray

code. Let y = f(xl,x2,x3) and hold xl,x2 constant at 0 to restrict

X to 000 and 001, the first entries in the Gray code. By assumption.
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y has an even number of I's in this range; therefore, f(OOO) = f(OOl).

Now, restricting xl = 0, x3 = 1, it is found that f(001) =f(Oil). In
N

a similar manner, xl,x2,x3 is taken through all 2 values to show

that f(OOO) = f(OOl) = f(Oll) r= = f(lOl) = f(lOO), Equivalently,

f(xl,x2,x3) = 0 or = 1 and is of degree 0.

Having established the base for the induction, we now show that, if

the result is true for N and D, it is also true for N+1 and D+1.

Let y = f (xl,x2, ... ,xN, x N+1) be a function of N+1 variables such

that all restrictions to (N +1) - (D +1) - 1 = N - D - 1 variables contain

an even number of l*s. We must show it can be expressed as an XOR of

products, each of degree <D + 1.

Holding X N+1 = 0 or 1 produces functions f*(xl,x2,...,xN) and

f"(xl,x2,... ,xN) . Because all restrictions of f(0 to N-D-1 vari

ables contain an even number of I's, so do all restrictions of f'(*)

and f"(0 to N-D-1 variables. By assumption, therefore, f*(0

and f"(0 can be written as XORs of products, each of degree <D, and

f (xl,x2, ..., xN+1) = xN+l f* (xl,x2, . .., xN)

+ X N +1 f"(xl,x2, .. ,, xN) (41)

is an XOR of products, each of degree <D + 1. This follows from the

distributivity of AND over XOR; that is,

a(b + c) = ab + ac . (42)

This completes the proof of Theorem 5.1.

Corollary. Each output of each S-box is expressible as an XOR of pro

ducts, with each term having degree at most five.

Proof.

Taking D = N-1, Theorem 5.1 states that a function with an even

number of I's in its truth table need not involve terms of degree N.

Because each row of an S-box is a permutation of the integers 0 through

15, any output bit has eight O's and l*s in each row and 32 0*s and

1*8 in the complete truth table.
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It is a good sign that the two S-boxes tested (SI and 84) each

required terms of the maximum possible degree (five).

As a final comment, note that taking c = 1 in (42) shows that

ab = ab +a. The maximal degree required is therefore not affected by

whether or not complementation of literals is allowed.

10. As discussed in the next section, the S-boxes were probably chosen

to minimize the difference between the number of l*s and the number of

0*8 in any S-box output when any input bit is held constant. Holding

one input bit constant results in 32 values for each output bit and DBS*

S-boxes are much closer to an even 16,16 distribution on 0 and 1 than

would be expected. For reasons explained in the next section, this

probably strengthens the algorithm.
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VI. STATISTICAL TESTS

Several statistical tests were performed to determine whether P-C

pairs could be used to predict bits of K. If P is variable, then we
64

have a mapping from 128 to 56 bits ; setting P = 0 reduces the mapping

to one from 64 to 56 bits, and this reduced size makes it more likely

that correlations will be found. These tests are of obvious use in a

chosen plaintext attack, but are useful even in a known plaintext at

tack. If is known plaintext-ciphertext pair, our statisti

cal tests could be duplicated with P = P^ instead of P = 0.

A set of N = 8000 K's were chosen at random and P = 0 was en

ciphered with each, resulting in 8000 ciphertext blocks. We then searched
thfor correlations between C and k^ (the i bit of K, 1 < i < 56) by

computing RS^(O) and RS^(l), the running (vector) sums of all C's
corresponding to k^ = 0 and k^ = 1. We then let

li = CRS^(0)/n^(0)] - [RS^(l)/n^(l)] (43)

where n^(0) was the number of terms contributing to RS.(O) (the num
ber of times k^ = 0), and n^(l) = 8000 -n^(0).

If DES is a good pseudo-random number generation (PRNG), each com

ponent of V. will have a normal distribution with mean 0 and variance
2 ^

C7 = 1/8000. For all 1 < i < 56 and 1 < j < 64, values of V . > 3a
- - - - ij

were printed as an indication of correlation between k. and C.. (Note
^ J

that < -3a is as significant but, as a result of a programming

oversight, they were not printed.)

Because the probability that > 3a for fixed i,j is 0.0014,

approximately five false alarms can be expected on 56 x64 values. If

> 4a, however, the false alarm rate drops to 0.11 over all i,J.

At 5a, it is 0.0005 and is truly indicative of correlation. The 3a

cutoff was chosen to allow later examination of the special cases found.

Our sample size of 8000 was small and, if larger runs are made, special

attention should be paid to those i,j values found here. Six values

of > 3a were found.
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i 3 13 27 37 41 46

j 46 40 28 6 15 16

V. .
ij

0.0337 0.0372 0.0347 0.0431 0.0450 0.0348

V. ./a
iJ

CO
•

o

3.3 3.1 3.9 4.0 3.1

2
The X statistic was also computed

64

= X (44)
j=l ^

to determine whether any key bit was particularly well correlated with

C. Values below the 1 percent and above the 99 percent values were spe

cially marked, as were those below 5 percent or above 95 percent. Random

fluctuations will cause approximately (0.02)(56) = 1.1 occurrences in the

first category and (0.1)(56) = 5.6 in the first or second category cate

gory even if there is no real correlation. A total of five values were

found, all in the second category. This is indicative of no real corre

lations, although larger tests are required to make a stronger case.

We also let

-i = V"^i" (45)
and used the decision rule

decide k^ = 0 if • (2C - 1) > 0

decide k^ = 1 if • (2C - 1) < 0

to predict k^ on 8000 new ciphertext blocks. If DBS is a good PRNG,
the expected probability of error on each bit is 0.50 and the standard

1/2deviation is (1/4 • 1/8000) = 0.0056. Probabilities of error of

0.489 or less are at the 2a level, and approximately one false alarm

can be expected in 56 tries; 3a (0.483) or 4a (0.472) are more sur

prising. Only one value, close to 2a, was found. Thus far, DBS gets

good grades on statistical regularity.
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A similar set of tests, also with N = 8000, was run on a two-

round version of DES with the thought that weak statistical structure

in the 16-round algorithm may be more pronounced. Studying the corre

lations in the two-round version may lead to the discovery of correla

tions in the full algorithm.

As an analogy, let

16

where each is an independent 0-1 random variable with bias (prob

ability X=l) of 0.25, and the sum is mod-2. Then, Y has bias
10

0.499992, and a sample of over 10 Y*s are required to validate the

statistical structure of Y. By comparison, a sample of only 100 X's

would suffice to validate the structure in X and, by implication, in

Y.

Table 3 lists V. . values more than +30" from the mean of 0 and
ij

is impressive both in its length and in the values. Random

fluctuations will cause V. ./cr to exceed 5 only once in a 1000 tries,
ij '

yet 25 such values were observed. The values of V. ./cr which exceed
ij

10 are even more indicative of statistical structure. It is apparent

that the two-round version of DES has significant statistical structure

that can be used in cryptanalysis.

A large number of were also observed in the 99 percent range,

which indicates that the above, linear decision rule can successfully

predict k.. Table 4 lists those values of i for which a. was above
1 1

the 99 percent value or for which the probability of correct prediction

was above 51.5 percent. The large number of double entries (P(a^) >
0.99 and Pr(correct) > 0.515) indicates the success of the linear

decision rule. Further, when one entry is missing, the other is small.

The quantity is defined as

= 100 [Pr(k^ correctly predicted) - 0.5] . (47)

Thus, = 2.5 corresponds to a 52,5 percent correct prediction,
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Table 3

Vij/G FOR DBS TRUNCATED TO FIRST TWO ROUNDS (N = 8000, a = 0.0112)

i 1 2 5 5 7 9 9 10 13

J 37 49 33 45 7 39 49 39 11

V. ./a
ij

6.1 5.5 4.6 5.1 3.1 6.8 4.8 3.1 5.5

i 15 15 15 18 18 21 23 25 26

j 7 21 35 37 51 21 31 3 23

V. Ja
ij

7.2 5.5 11.1 12.5 10.6 3.1 7.6 7.8 16.5

i 27 28 30 34 35 35 35 36 36

j 55 41 45 15 3 5 23 19 55

V. Ja
ij

3.4 6 .1 5.5 11.9 4.3 3.6 5.5 3.7 11.1

i 37 37 39 40 42 44 49 49 49

J 1 41 63 25 38 17 25 50 59

Vij/a 10.0 11.9 4.7 3.1 3.5 5.1 3.3 3.2 5.5

i 51 51 53 53 53 54 55

j 13 15 31 33 43 41 29

V. Ja
ij

5.3 5.3 4.4 4.8 4.7 4.4 5.5
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Table 4

VALUES OF AND FOR TWO-ROUND VERSION OF DES

i 1 2 5 6 9 13 15 16 18 19

200 169 270 93 172 151 269 309

Pi 3.5 6.9 5.1 3.1 4.6 1.6 5.7 1.6

i 21 23 25 26 27 28 29 30 34 35

144 159 211 375 142 185 244 649 119

Pi

CO
•

o

6.7 4.5 2.1 2.9 1.9 2.7 5.1 4.1

i 36 37 38 39 41 42 44 45 46 47

Oi.
1

331 352 362 120 98 136 105

Pi 3.8 3.5 6.5 2.4 4.6 2.9 3.0 1.7 1.9

i 49 50 51 52 53 54 55

a.
1

214 149 124 141 148

Pi 2.2 4.0 3.3 2.2
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The large statistical fluctuations present in the two-round version

of DES may not be indicative of a weakness in the full 16-round algorithm

because, as noted below, the S-boxes were chosen to minimize these fluc

tuations, and random S-boxes would have even larger fluctuations in a

two-round implementation.

Since P = 0, = 0 and = 0; then

= Rq = 0 (48)

R^ = Lq + f(ERq + K^) = f(K^) (49)

and

L2 = Rf = f(K^) (50)

R2 = Li + f(ER^ + K2)

=f^Ef(K^) + . (51)
As a result, the ciphertext

C= Ip"^(R2,L2) (52)

-1includes the 32 bits of f(K^). Examination of IP reveals that these
bits occupy the 32 odd positions (1,3,••.,63) of C, and not too sur

prisingly 41 of the 43 j values listed in Table 3 are odd. The two

exceptions (i = 42, j = 38, and i = 49, j = 50) are near the border

line of values, 3.5a and 3.2a, respectively.

The reason for this behavior and for the clustering of V. . values
^ J

is that each of the 32 bits in is output of an S-box whose

inputs are six key bits in some permuted order. Holding one of these

input bits constant and letting the other five vary generates 32 outputs.

If the number of I's in these 32 outputs is not exactly 16, a correla

tion exists between that pair of input-output bits. The unrestricted 64

values of the output had exactly half l*s because of the permutation

property within each row; this is not true, however, when the input bit
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held constant is one of the middle four (x2,x3,x4 or x5). Probability

theory indicates that the V . value can be used to predict the number
xj

of I's in the 32 value restriction. If there are 16 I's, the expected

value of V. . is 0. If there are 15 I's,
J

(53)

where a = 0.11 is not the actual standard deviation of V, but is
ij

the value used in Table 3 which assumed independent samples. Similarly,

if there are 14 1 *s,

EV. . =^ ^ = 0.125 = 11.2CJ
ij 32 32

(54)

etc. Choosing decision boundaries midway between the expected values,

we estimate 35 occurrences of 15 l*s, seven occurrences of 14 I's, one

occurrence of 13 I's, and no occurences of 12 or fewer I's. Because

negative values of were not available, the number of occurrences

of 17 or more I's could not be predicted.

If each permutation in each row is chosen randomly.

Pr(k I's) =
rxij

(al)

(32'.)

64'. (kl)^ ((32-k)'.j' (55)

which is obviously symmetric about k = 16. A short table of Pr(k)

and the expected number of occurrences of k I's in 128 samples,

128Pr(k), are

k 16 17 18 19 20 21 22

Pr(k) 0.197 0.175 0.121 0.066 0.028 0.009 0.002

128Pr(k) 25 22 15 8.5 3.6 1.2 0.3
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It is seen that DES' S-boxes have many fewer occurrences of 18 or more

O's (15 or fewer I's) than would be expected if the S-boxes were chosen

randomly. This is a good characteristic, if it does not include other,

weakening structure.

To validate the use of to predict the number of l*s, we se

lected the i = 18, J = 37 and 51 and the i = 37, j = 1 and 41 values;

these are all in the 8.4a to 14a range which indicates 14 I's and 18

0*s in the restricted S-box. Tracing i = 18 through PC-1, a left

shift and PC-2, k becomes x5 in S4 during round 1. Tracing C

and back through IP~ and P, = y2 and = y3 from S4

in round 1. Holding x5 = 0 in S4 yields 14 I's in y2 and in y3, in

agreement with our prediction. Similarly, i = 37, j =1 and 41 corre

sponds to x5, yl, and y4, all in S5 during round 1. Again, holding

x5 = 0 in 85 yields 14 I's in both yl and y4.

It must be remembered that IP ^ operates on R,„L^ not L R ;
16 16 16 16'

in the two-round version, this corresponds to IP operating on R L .
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VII. TWO ROUND CRYPTANALYSIS

Cryptanalysis of the two-round version of DBS was undertaken with

the hope of finding methods for attacking the full 16-round algorithm.

We were successful in developing relatively simple techniques for break

ing the two-round version but did not have time to investigate how these

might be used in the 16-round algorithm.

Knowing P is equivalent to knowing and R^, and knowing C
is equivalent to knowing and Rg. Since

h " % ^1 = ^0

h " h ^2 = ^1 , (57)

^2 ^ ^0 ^ (58)

and

we have

and

Breaking the two-round version therefore reduces to solving two equations

of the form Z = f(R,K) for K, with both Z and R known• Because
Q

there are four inverse images for each S-box, there are 4 = 65,536 so

lutions to each of the two equations (58) and (59). Using the constraint

that 40 bits of must match 40 bits of K^, in fixed permuted posi
tions, allows determination of the one correct solution K. One method

deletes the eight bits of K. that are not in K and orders the re-
-L ^

sultant 40-bit quantities. It then selects the corresponding 40 bits of

each possible solution, with the bits permuted to match those of the

ordered K^ '̂s, and watches for a match. The number of operations in
volved is approximately 65536 logg(65536) = 1.05 million, and can be done
on a minicomputer.
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VIII. POSSIBLE WAYS TO STRENGTHEN DES

We recommend the following techniques for possible strengthening of

DES. Further study is obviously needed on most.

1. Increase the number of rounds from 16 to 32, 64, or even more.

2. Use less structured S-boxes. Making an algorithm more complex tends

to make it more secure, and low complexity S-boxes appear to be a weak

ening influence (S4 is particularly poor, being 75 percent redundant).

Even if certain structures are required (such as the 2:1 error ex

pansion and small values), the S-boxes should be chosen randomly

from the set which satisfies these properties. If the set becomes too

small, there is probably a fault in the basic structure of DES. The in

creased number of rounds suggested will probably ease the restrictions

on the S-boxes.

3. PC-2 should mix the C- and D-register contents.

4. Introduce the effect of the key in a more complex way than just

XORing it with ER. The most general way to map six bits of ER and

six bits of K into a 6-bit S-box input is through a 12-bit to 6-bit

ROM (4098 X 6 organization). This is too expensive but indicates that

the problem is solvable. For example, two 6-bit to 3-bit mappings could

be used.

Having one or more key dependent S-boxes may even be better.

5. Make the key-scheduling algorithm more nonlinear and lengthen the

distance between expanded keys. Currently, a 56-bit key is expanded

into a 768 = 16 X 48 bit key by repeating each bit between 12 and 15

times. Changing one bit of the 56-bit key can thus change as few as

12 positions in the expanded key. Simple techniques from coding theory

produce larger "minimum distances" which would help combat a key-clust

ering attack.
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A BCH code would yield a minimum distance of over 140, and larger

values are possible. These key expansion codes could be implemented as

a 56-stage feedback shift register and are therefore no more complex

than the current C-D registers and shift-schedule memory. Use of a

nonlinear code would also be useful.

6. Enlarge the key. We understand that NSA, through the Munitions

Control Board, allows 56-bit (and perhaps 64-bit) key systems to be

exported but almost always rejects applications for export licenses

on larger key systems. This adequately supports our recommendation

for a larger key.
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IX. FUTURE TASKS

1. Search for additional structure in the S-boxes and relate it to

potential weaknesses and strengths. Relationships between sums of in

puts and sums of outputs (as in S4) are of particular interest.

2. Use the Quine-McCluskey minimization algorithm and possible exten

sions to an XOR of products to find minimal expressions for each S-box.

Joint minimization of the four outputs should also be considered.

3. Investigate the degree of degeneracy of the 32-bit to 32-bit func

tion from R to y defined by y = f(R,K), with K fixed. Determine

whether this can be used in cryptanalysis and how the choice of K af

fects the degeneracy.

4. Generate S-boxes with various trap doors (such as parity) that al

low recovery of a number of key bits. Determine how well hidden they

can be and whether any related structures are present in DES.

5. Run longer and more varied statistical tests. Attempt to relate

any anomalies to structure in the S-boxes, P, etc., and determine

whether they can be used in cryptanalysis.

6. Generate S-boxes at random within the constraints found thus far in

DES (such as the 2:1 error expansion), and note whether they avoid the

potential weaknesses found in DES' S-boxes.

7. Study the use of approximations to the S-boxes in cryptanalysis.

Determine how difficult the equations are to solve as a function of the

number of terms present.

8. Check if any row of any S-box is equivalent to a different row of

the same or another S-box under input and output complementation and

permutation.
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9. Run Schroeppel's D test on all 32 S-box outputs.

10. Search for a sum of input bits that toggle a sum of output bits in

an S-box.

11. Run a modified rank test searching for. overlaps in the null space

that indicate probabilistic trap doors.

1^. Run a program to determine the number of occurrences of i l*s and

32-i O's in an S-box output when one input is held constant. Compare

to the V. . prediction.

13. Extend the two-round cryptanalysis to a larger number of rounds.

14. Seek ways to reduce cryptanalysis of the full 16 round algorithm to

solving two simultaneous equations of the form f(Rj^,Kj^) = and

f(R2»^2^ = Zg for and K^, as in the two-round crjqjtanalysis.
Determine whether the birthday problem can be used. (If there are n

1/2
days in -jthe year, it only takes about n people before two will have

16a birthday in common. In DES, it only takes about 2 = 65,536 P-C

pairs before two will share a common L^g. If a test for finding this
pair can be found, approximately 32 key bits could probably be recov

ered .)
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X. CONCLUSION

Structures have been found in DBS that were undoubtedly inserted to

strengthen the system against certain tj^es of attack. Structures have

also been found that appear to weaken the system.

We believe that the potential weaknesses require greater attention

because it only takes one successful avenue of attack to break a system.

In addition, it is poor security practice to trust a system whose design

and certification will not be described. We, therefore, encourage the

public release of DBS' design principles and the results of IBM's 17

man-year certificational effort.
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Appendix

Binary Versions of S-Boxes

SBOX NUMBER i

OdPO 1110

0001 0100

0010 1101

0011 0001

0100 0010

0101 nil

0110 1011

0111 1000

1000 0011

1001 1010

1010 0110

1011 1100

1100 0101

1101 1001

1110 0000

1 111 0111

0000

1111

0111

0100

1110

0010

1 101

0001

1010

0110

1 100

101 1

1001

0101

001 1

1000

0100

0001

1110

1000

1 101

0110

0010

101 1

1111

1100

1001

0111

001 1

1010

0101

0000

1111

1 100

1000

0010

0100

1001

0001

0111

0101

101 1

0011

1110

1010

0000

0110

1 101

SBOX NUMBER 2

0000 nil 0011 0000
i

1101

0001 0001 1 101 1110 1000

0010 1 000 0 100 0111 1010

001 1 1110 0111 101 1 0001
0100 0110 1111 1010 001 1

0101 1011 0010 0100 nil

0110 0011 1 000 1 101 0100

0111 0100 1110 0001 0010

1 000 1 001 1 100 0101 101 1

1001 0111 0000 1000 0110
1 0 1 0 0010 0001 1 100 0111
1011 1101 1010 0110 1 100

1100 1100 0110 1 001 0000

1 101 0000 1001 0011 0101
1110 010 1 101 1 0010 1110

nil 1010 0101 nil 1001
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SBOX NUMBER

0000

0 00 1

0010

0 011

0100

010 1

0110

0111

1 00 0

1 00 1

1010

1011

1100

110 1

1110

1111

101 0

0000

1001

1110

0110

001 I

1111

010 1

000 1

1101

1100

0111

1011

0100

0010

100 0

SBOX NUMBER

OoOO

0 001

0 010

0011

010 0

0 10 1

0 110

_o n i_
1 00'5"
1 00 1

1010

1 01 1

1100

110 1

i 1 i 0

1111

T
0 111

110 1

1110

001 1

0 00 0

0110

♦ l 0^
mo 10
0 001 •
0 010

100 0

0101

1011

^1 100
' 0 W 0•
mill

—I
1 101

0111

0000

1001

0011

0100

0110

1010

0 010'

1 000

0101

1110

1 100

1011

1111

0 001

—

1101

1 00 0

1011

0101

Oj^ 0'
1111

0000

i_
010 0

0111

0010

1 100

0 00 1

1010

1 i i 0

1 001

±_J
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1 101

0110

0100

1 001

1 000

1111

001 1

0000

1011

0 00 1

0010

1100

0 10 1

1010

1110

0 111

1010

0110

1 001

To 0 0
1 100

1011

0111

1

Till
0 00 1

001 1

1110

0 101

0010

1 600

0100

*t!Z

0001

1010

1 101

0000

0110

1001

1 00 0

0111

0 100

1111

1 110
0011

101 1

0101

0010

1 100

ooiJH
111'̂

0000

0110

1010

0001

1 10 1

100 0

'10^
OTO Oi

0101

1011

1 100

0111

OOi 0

1110

±J



SBOX NUHBER

0000 0010 1110 0100 101 1

0001 1100 1011 0010 1000
0010 0100 0010 0001 1 100
001 1 0001 1 100 1011 oil 1

0100 0111 0100 1010 0001

0 101 1010 0111 1 101 1110

0 110 101 1 1 101 0111 0010
0111 0110 0001 1 000 1 101
1 000 1000 0101 1111 0110

1 001 0101 0000 1 001 nil

1010 001 1 1111 1 100 0000
101 1 1111 1010 0101 1 001
1 100 1101 0011 0110 1010

1 101 0000 1 001 001 1 0100

1110 1110 1000 0000 0101

nil 1001 0110 1110 001 1

SBOX HUHBER B

0 00 0 n 0 0 1010 1001 0100
0001 0001 1111 1110 001 1
0010 1010 0100 111 1 0010
001 1 1111 0010 0101 1 100
0 10 0 1001 0111 0010 1001
0101 0010 1100 1 000 0101
0110 0110 1 001 1 100 nil
0 111 1 000 0101 001 1 1010
1 000 0000 0110 0 111 1011
1 001 1101 0001 0000 1110
1010 001 1 1 101 0100 0001
1011 0100 1110 1010 0111
1 100 1110 0000 0001 0110

1101 0111 101 1 1101 0000
1110 0101 001 1 101 1 1 000
nil 101 1 1 000 0110 1101
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SBOX HUMBER

'I' if
0 00 0 0100 1 101 0001 0110

0001 1011 0 00 0 0 100 1011

0010 0010 1011 1011 1101

001 1 1110 0 111 1 10 1 1 00 0

0 10 0 lilt 0100 1100 000 1

0 10 1 0 00 0 1001 0011 0100

0 110 1 000 0001 0 111 1010

0 1 1 1 110 1 1010 1110 0 111

i 0 0 0 0011 1110 1010 1001

i 001 1 too 0011 1111 010 1

i 010 1 00 1 0101 0 110 0 00 0

1011 0111 1100 100 0 1111

1 1 0 0 0 10 1 0010 0 00 0 1110

110 1 1010 1111 0 101 0010

1110 0 110 1 00 0 1 00 1 0011

1111 .0 00 1 0110 0 010 1 100

SBOX HUHBER 8

0 0 '> 0

0 0 V 1

0 0 1 0

00! i

0 1 0 0

0 I 01

0 i 1 0

0 i 1 i

1 0 0 0

1 00 1

1 0 1 0

1 0 1 i

1 1 0 0

I 10 1

1110

I 1 i 1

f
i 10 1

00 i 0

1 000

• 0 i 0 0 -

0 i 1 0

1 i 1 1

4 01 i-

0 00 t

1010

1 001

r^ooi 1-
1110

0 10 1

0 0 0 0

10 0-

0 111

1.

000 I

1111

110 1

-1000

1010

001 1

0 111-

0 100

1 100

0101

• 0 11 0-

1011

0 00 0

1110

-1 00 1-

0010

t
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0 111

101 I

0100

000 1

1 001

1 100

-1110-

0 010

0000

0110

-1010-

1101

1111

0011

-0 101-

1 00 0

0010

0 00 1

1110

-0111

0 100

1010

- 1 00 0

1 101

1111

1100

-1 00 1

0000

001 1

0101

-0110

1011

1



REFERENCES

!• Horst Feistel, "Cryptography and Computer Privacy," Scientific Am
erican, Vol, 228, pp. 15-23, May 1973.

2. IVhitfield Diffie and Martin Hellman, "New Directions in Crypto
graphy," IEEE Transactions on Information Theory, Vol. IT-22, Nov
ember 1976.

3. Seymour Jeffery (Chief, Systems and Software Division, NBS), letter
dated January 6, 1975 (error in date—it was sent in January 1976)
to Prof. Martin Hellman.

4. IVhitfield Diffie and Martin Hellman, "Cryptanalysis of the NBS Data
Encryption Standard," submitted to Computer magazine. May 1976.

5. David Kahn, The Codebreakers, New York: Macmillan, 1967.

6. National Bureau of Standards, "Notice of a Proposed Federal Infor
mation Processing Data Encryption Standard," Federal Register, Vol.
40, No. 12134, March 17, 1975.

50


